Biblioteca de Psicología Inicio > Biblioteca de Psicología > Exposiciones Virtuales > La Psicología Matemática a través de sus textos > Bibliografía La Psicología Matemática a través de sus textos PORTADA || EVOLUCIÓN HISTÓRICA || CUESTIONES POLÉMICAS || SOCIEDADES Y REVISTAS TEMAS ACTUALES || PÓSTERES || TALLER || CONFERENCIA || BIBLIOGRAFÍA || DOCENCIA | BIBLIOGRAFÍA: |
- Abraham, A. (2010). Computational social network analysis trends, tools and research. Dordrecht: Springer.
- Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-269.
- Alwin, D. F., & Jackson, D. J. (1981). Applications of simultaneous factor analysis to issues of factorial invariance. En D. D. Jackson & E. P. Borgatta (Eds.), Factor analysis and measurement in sociological research: a multidimensional perspective (pp. 249-280). Beverly Hills, CA: Sage.
- Anderson, J. A. (1995). An introduction to neural networks. Cambridge, MA:MIT Press.
- Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Ashby, F. G. (1992). Probabilistic multidimensional models of perception and cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Atkinson, R. C., Bower, G. H., & Crothers, E. J. (1965). An introduction to mathematical learning theory. New York, NY: Wiley.
- Batchelder, W. H. (2002). Mathematical Psychology. En A. E. Kazdin (Ed.), Encyclopedia of Psychology. Washington/New York: APA/Oxford University Press.
- Batchelder, W. H. (2009). Cognitive psychometrics. Using multinomial processing tree models as measurement tools. En S. Embretson. Advances in model based approaches. Washington. American Psychological Association.
- Batchelder, W. H. & Riefer, W. H. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin and Review, 6, 57-86.
 - Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Traducción del artículo original de Daniel Bernoulli de 1738. Econometrica, 22, 23-26. Recuperado en http://www.jstor.org/sici?sici=0012-9682%28195401%2922%3A1%3C23%3AEOANTO%3E2.0.CO%3B2-X
- Bock, R. D. y Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459. Disponible en papel en la UAM
- Bock, R. D. y Jones, L. V. (1968). The measurement and prediction of judgment and choice. San Francisco. Holden Day.
- Bollen, K A (1989). Structural Equations with Latent Variables. New York: Wiley.
- Borsboom, D., Mellenbergh, G. J., & Heerden, J. v. (2003). The theoretical status of latent variables. Psychological Review, 110, 203–219.
 - Borsboom, D., Mellenbergh, G. J., & Heerden, J. v. (2004). The concept of validity. Psychological Review, 111, 1061-1071.
 - Brooks, S., Gelman, A., Jones, G. L. & Meng, X. L. (2011). Handbook of Markov chain Monte Carlo. New York. Chapman & Hall/CRC
- Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: The Guilford Press.
- Browne, M. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.
- Burt, C. (1909). Experimental tests of general intelligence. British Journal of Psychology, 3, 94-177.
 - Bush, R. R. & Mosteller, F. (1955). Stochastic models for learning. New York, Wiley.
- Carrington, P. J. (2011). The Sage handbook of social network analysis. Sage Publications.
- Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5-32. Disponible en papel en la UAM
- Cliff, N. (1992) Abstract measurement theory and the revolution that never happened. Psychological Science, 3, 186-190.
 - Cohen, J. (1994). The Earth is round (p<.05). American Psychologist, 49, 997-1003.
 - Cooper, H., & Hedges, L. V. (1994). Handbook of research synthesis. New York: Russell Sage Foundation.
- Crocker, L. (1986). Introduction to classical and modern test theory. Holt, Rinehart and Winston.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. Disponible en papel en la UAM
- Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671-684.
 - Cronbach, L. J. & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281-302
 - Cudeck, R. Du Toit, S. Sörbom, D. (2001). Structural Equation modeling: Present and future. SSI Scientific Software International.
- Darwiche, A. (2009). Modeling and reasoning with Bayesian networks. Cambridge. Cambridge University Press.
- de Boeck. (2004). Explanatory item response models a generalized linear and nonlinear approach. New York: Springer.
- Dunn-Rankin, P. (1983). Scaling methods. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
- Egan, J. P. (1975). Signal detection theory and ROC analysis. New York. New York. Academic Press
- Ehrenberg, A. S. C. (1962). Some questions about factor analysis. The Statistician, 12, 191-208.
 - Estes, W. K. (1950). Towards a statistical theory of learning. Psychological Review, 57, 94-107.
 - Fechner, G. (1966). Elements of Psychophysics. Holt Rinehart & Winston. Bristol: Thoemmes Press
- Fischer, G. (1995). Rasch models foundations, recent developments, and applications. New York: Springer-Berlag.
- Fox, J. P. (2010). Bayesian item response modeling. New York. Wiley
- Galton, Sir Francis (1869). Hereditary genius. Recuperado de: http://www.mugu.com/galton/books/hereditary-genius/index.html
- Galton, Sir Francis (1894). Natural Inheritance. Macmillan. Recuperado de: http://www.mugu.com/galton/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf
- Gelman, A. (2004). Bayesian data analysis. London: Chapman & Hall.
- Gelman, A. Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Third edition. New York. Chapman & Hall/CRC
- Gilks, W. R. Richardson, S. & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice. New York. Chapman & Hall/CRC.
- Gill, J. (2008). Bayesian methods a social and behavioral sciences approach. Boca Raton: Chapman & Hall.
- Glass, G. V (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3–8. Recuperado en http://www.dataschemata.com/uploads/7/4/8/7/7487334/glass_1976_primarysecondarymetaanalysis.pdf
- Green, D. & Swets, J. A. (1974). Signal Detection Theory and Psychophysics. Malabar, FL. Robert E. Krieger Publishing Company
- Guilford, J. P. (1954). Psychometric methods. New York: McGraw Hill.
- Gulliksen, H. (1950). Theory of mental tests. New York: John Wiley and Sons.
- Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
- Hunter, J. E. (1997). Needed: a ban on significance testing. Psychological Science, 8, 3-7.
- Hunter, J. E. & Schmidt, F. L. (1990). Methods of meta-analysis: correcting error and bias in research findings. Newbury Park, CA: Sage
- Jackson, M. O. (2008). Social and economic networks. Princeton: Princeton University Press.
- Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183-202 Disponible en papel en la UAM
- Jöreskog, K. G. & Sörbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt books.
- Jöreskog, K. J. & Sörbom, D. (1996). LISREL 8: User’s reference guide. SSI Scientific Software International.
- Kahneman, D. (2011). Thinking, fast and slow. New York. Farrar, Straus and Giroux.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–299.
 - Kahneman, D., & Tversky, A. (1982). Judgment under Uncertainty: Heuristics and Biases. Cambridge. Cambridge University Press.
- Kahneman, D., & Tversky, A. (2000). Choices, values and frames. Cambridge. Cambridge University Press.
- Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement. New York, NY: Academic Press.
- Lawley, D. N., & Maxwell, A. E. (1963). Factor analysis as a statistical method. London: Butterworth.
- Lazarsfeld. P. F. & Henry, N. W. (1968). Latent structure analysis. New York: Houghton Mifflin.
- Lee, S. K. (2007). Structural equation modeling. A Bayesian approach. New York. Wiley.
- Lindley, D. V. (1964). Factor analysis. A summary of discussion. The Statistician, 14, 47-61.
 - Lord, F. L. (1952). A Theory of Test Scores (Psychometric Monograph No. 7). Psychometrika Disponible en papel en la UAM
- Lord, F. L. & Novic, M. R. (1968). Statistical theories of mental tests scores. Reading, MA. Addison-Wesley Publishing Company, Inc.
- Lord, F. M. (1953). On the Statistical Treatment of Football Numbers. American Psychologist, 8, 750-751.
 - Luce, R. Duncan.(1959). Individual choice behavior : a theoretical analysis. Mineola, N.Y. : Dover Publications.
- Luce, R. D. (1986). Response times: Their Role in Inferring Elementary Mental Organization. Oxford. Oxford University Press.
- Luce, R. D., Bush, R. R., & Galanter, E. (1963). Handbook of mathematical psychology. Volumes I, II and III. New York. Wiley.
- Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525-543. Disponible en papel en la UAM
- Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational Measurement (3rd ed., pp. 13-103). New York: American Council on Education/Macmillan.
- Michell, J. B (1997). Quantitative science and the definition of measurement in psychology. British Journal of Psychology, 88, 355–383.
 - Michell, J. (2000). Normal science, pathological science and psychometrics. Theory & Psychology, 10, 639-667. Recuperado en http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2742&rep=rep1&type=pdf
- Michell, J. (2012). Alfred Binet and the concept of heterogeneous orders. Frontiers in Psychology, 3, 1-8. Recuperado de: http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/10.3389/fpsyg.2012.00261/abstract
- Millsap, R. E. & Maydeu-Olivares, A. (2009). The SAGE handbook of quantitative methods in psychology. Thousand Oaks. Sage.
- Minsky, M., & Papert, S. (1969). Perceptions. Cambridge, MA. MIT Press.
- Mulaik, S. A. (1972). Foundations of factor analysis. New York: McGraw-Hill.
- Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. Disponible en papel en la UAM
- Nering, M. L. (2010). Handbook of polytomous item response theory models. New York: Routledge
- Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy. Psychological Methods,5(2), 241-301.
 - Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. New York. Wiley.
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco. Morgan Kaufmann Pub
- Pearl, J. (2009). Causality models, reasoning, and inference. Cambridge. Cambridge University Press.
- Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2, 11, 559–572.
- Rao, C. R. & Sinharay, S. (2006). Handbook of Statistics, Volume 26: Psychometrics. Boston : Elsevier.
- Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen. Denmarks paedagogiske institut. Expanded edition (1980) with foreword and afterword by B.D. Wright. Chicago: The University of Chicago Press.
- Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 4, 321-333. Recuperado en http://econ.ucsb.edu/~doug/245a/Papers/Meaning%20of%20Measurement.pdf
- Rasch, G. (1977). On specific objectivity. An attempt at formalising the request for generality and validity of scientific statements. Danish Yearbook of Philosophy, 14, 58-94.
- Reckase, M. (2009). Multidimensional item response theory. New York: Springer.
- Rounder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225-237.
 - Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological Bulletin, 57, 416-428.
 - Rumelhart, D., & McClelland, J. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Boston, MA: MIT Press
- Schilling, S. y Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70, 533-555. Disponible en papel en la UAM
- Scott, J. (2000). Social network analysis a handbook. London: Sage Publications.
- Sörbom, D. (1981). Structural equation models with structured means. En K.G. Jöreskog & H. Wold (Eds.): Systems under indirect observation: causality, structure and prediction. Amsterdam: North-Holland Publishing
- Spearman, C. E. (1904a). ‘General intelligence’ objectively determined and measured. American Journal of Psychology, 5, 201-293.
 - Spearman, C. E. (1904b). Proof and measurement of association between two things. American Journal of Psychology, 15, 72-101
 - Spearman, C. (1927). The abilities of man: their nature and measurement. New York : The Macmillan Company.
- Spearman, C. E. & Jones, L. W. (1951). Human abilities. London: Macmillan.
- Stevens, S. S. (1946). On the Theory of Scales of Measurement. Science, 103, 677–680
 - Stevens, S. S. (1951) Handbook of experimental psychology. New York, NY: Wiley.
- Stevens, S. (1957). On the psychophysical law. Psychological Review, 64, 153-181.
 - Stevens, S. S. (1961). To Honor Fechner and repeal his law. Science, 133, 80-86
 - Thompson, B. (2004). Exploratory and confirmatory factor analysis. Washington DC: The American Psychologial Association.
- Thomson, G. H. (1939). The factorial analysis of human ability. London: Houghton Mifflin.
- Thurstone, L. L. (1927). A law of comparative judgment. Psychological review, 34, 273-286.
 - Thurstone, L. L. (1928). Attitudes can be measured. The American Journal of Sociology, 4, 529-.554.
 - Thurstone, L. L. (1934). The vectors of mind. Psychological Review, 41, 1-32.
 - Thurstone, L. L. (1937). Psychology as a quantitative rational science. Science, 85, 227-232.
 - Thurstone, L. L. (1937). Psychology as a quantitative rational science (excerpts). Psychometrika, 51, 7-10. Disponible en papel en la UAM
- Thurstone, L. L. (1947). Multiple factor analysis. Chicago: The University of Chicago Press.
- Thurstone, L. L. (1954). The measurement of values. Psychological review, 61, 47-58.
 - Torgerson, W. S. (1958). Theory and methods of scaling. New York. Wiley.
- Townsend, J. T. & Ashby, F. G. (1984). Stochastic modeling of elementary psychological processes. Cambridge. Cambridge University Press
- Townsend, J. T. (2007). Mathematical psychology: Prospects for the 21st century: A guest editorial. Journal of Mathematical Psychology, 52, 269–280.
 - Tversky, A. & Sattath, S. (1979). Preference trees. Psychological Review, 86, 542–573.
 - Van der Linden, W. J. (1997). Handbook of modern item response theory. New York: Springer.
- Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25, 1-28. Disponible en papel en la UAM
- von Davier, M. (2007). Multivariate and mixture distribution Rasch models extensions and applications. New York: Springer.
- Wainer, H. (1999). One cheer for null hypothesis significance testing. Psychological Methods, Vol 4(2), 212-213.
 - Wasserman, S. & Faust, K. (1994). Social network analysis. Methods and applications. Cambridge: Cambridge University Press.
- Wickens, T. D. (1982). Models for behavior Stochastic processes in psychology. San Francisco, W. H. Freeman and Company
- Widaman, K. F. (2007). Common factors versus components: Principals and principles, errors, and misconceptions. En R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 177-203). Mahwah, NJ: Lawrence Erlbaum Associates.
- Wiley, L. E. & Wiley, A. M. (1937). Studies in the learning function. Psychometrika, 2, 107-120. Disponible en papel en la UAM
- Wilkinson, L. (1999). Statistical methods in psychology journals. American Psychologist, 54, 594-604.
 - Winston, P. H. (1993). Artificial intelligence. Boston. Addison Wesley.
- Woldstein, H. & Wood, R. (1989). Five decades of item response modeling. British Journal of Mathematical and Statistical Psychology. 42, 139-167.Disponible en papel en la UAM
- Wright, B. D. (1979). Best test design. Mesa Press.
- Yalcin, I. & Amemiya, Y. (2001). Nonlinear factor analysis as a statistical method. Statistical Science, 16, 275-294.
- Yela, M. (1949). Application of the concept of simple structure to Alexander's data. Psychometrika, 14, 121-135. Disponible en papel en la UAM
- Zand Scholten, A., & Borsboom, D. (2009). A reanalysis of Lord's statistical treatment of football numbers. Journal of Mathematical Psychology, 53, 69-75.

|
|