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Age-​related diseases are often characterized by the 
presence of sustained inflammatory processes that 
ultimately contribute to the breakdown of tissue 
homeostasis1. As immune cells are essential for both 
mounting and successfully resolving inflammatory 
responses, age-​associated diseases are beginning to be 
understood through the prism of a causal contribution 
of the immune system. Although the contribution of the 
innate immune system to several age-​related pathologies 
has long been acknowledged, more recent studies are 
also disclosing an active participation of the adaptive 
immune system, highlighting a central role for T cells.

In this Review, we discuss recent evidence support-
ing the idea that T cells contribute to the onset and pro-
gression of various age-​related conditions. We focus on 
cardiovascular conditions — including hypertension, 
atherosclerosis and myocardial infarction — and on 
metabolic disorders such as obesity-​associated insulin 
resistance. Despite their scarce presence in the central 
nervous system, roles for T cells in age-​associated neuro
logical disorders are also becoming evident and this area 
is currently a major research focus. Thus, we also dis-
cuss the roles of T cells in neurodegenerative disorders 
such as Alzheimer disease or Parkinson disease and in 
ischaemic stroke. Although other diseases that are clas-
sically categorized as autoimmune disorders — such as 
rheumatoid arthritis, multiple sclerosis, type I diabetes 
or myocarditis — can also be associated with ageing, 
we have excluded them from this Review because the 
involvement of T cells in these pathologies is unques-
tionable and has been discussed elsewhere2. Finally, 
in the context of ageing, the roles of T cells in tissue 

renewal, homeostasis and repair could be particularly 
important for the maintenance of barrier tissue integrity, 
especially in the gut. In line with this, Elie Metchnikoff 
proposed more than a century ago that age-​related dys-
function could result from increased chronic systemic 
inflammation owing to enhanced colon permeability3. 
We have revisited this concept in light of recent advances 
that suggest a crucial role for T cells in regulating barrier 
tissue maintenance and the gut microbiota.

T cells in ageing and inflammageing
The most striking variations seen with age in the total 
T cell pool are the shrinking of the naive T cell compart-
ment and the increase of the memory T cell pool, leading 
to a reduction in the size of the available T cell receptor 
(TCR) repertoire. These changes are caused, in part, by 
thymic involution, by impaired homeostatic prolifera-
tion of naive T cells and by the exposure of T cells to 
antigens throughout life4. Memory T cells in older peo-
ple acquire extremely differentiated phenotypes, and 
lose the expression of co-​stimulatory molecules such as 
CD28 and CD27, becoming senescent or exhausted5,6. 
Both senescent and exhausted T cells display certain 
molecular hallmarks of ageing, such as mitochondrial 
dysfunction7,8 and epigenetic remodelling4,9. In addi-
tion, senescent T cells display signs of DNA damage 
and short telomeres and activate senescence-​associated 
signalling pathways10–12. Besides low expression of 
co-​stimulatory molecules, expression of natural killer 
cell-​associated markers (KLRG1, NKG2A, NKG2C 
and NKG2D) allows the identification of senescent 
T cells in humans and mice13. In humans, senescent 
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T cells include a fraction of the terminally differentiated 
T effector memory CD45RA+ (TEMRA) cells that re-​express 
CD45RA and have preferential homing capacity for 
peripheral tissues12. This is due to the expression of 
chemokine receptors, such as CX3C-​chemokine receptor 1  
(CX3CR1) and CC-​chemokine receptor 5 (CCR5), that 
enable homing to peripheral sites of inflammation and 
the loss of lymphoid-​homing receptors, such as CD62L 
and CCR7. Additionally, CD57 and FAS (also known 
as CD95) have also been used to identify senescent 
human T cells14 and CD153 is commonly used to iden-
tify a minor population of senescent T cells in mice15–17. 
Functionally, senescent T cells acquire extremely differ-
entiated phenotypes, harbouring features of T helper 1 
(TH1) cells, TH17 cells, TH9 cells, T follicular helper (TFH) 
cells or activated regulatory T (Treg) cells, and are char-
acterized by increased secretion of pro-​inflammatory, 
cytotoxic and anti-​inflammatory cytokines5,18. On the 
other hand, exhausted T cells lose the capacity to secrete 
effector cytokines and are characterized by the expres-
sion of inhibitory molecules such as PD1, TIM3 and 
LAG3, and the transcription factors TOX and BLIMP1 
(ref.6). Traditionally, owing to their inflammatory and 
cytotoxic signature, senescent T cells have been con-
sidered to harbour pathological potential19. However, 
a recent report showed that exhausted T cells secrete 
high amounts of granzyme K that can also exacerbate 
inflammation18, supporting the idea that different sub-
sets of age-​associated T cells can promote tissue damage. 
The accumulation of these age-​associated T cells can also 
be accelerated by external factors, such as chronic viral 
infections that occur over the human lifespan19. Of note, 
individuals less susceptible to age-​associated accelerated 
immunosenescence upon cytomegalovirus infection are 
associated with families with extreme longevity20.

Inflammageing is the chronic, low-​grade inflamma-
tory state that appears in association with ageing. It is 
characterized by increased circulating levels of certain 
cytokines, such as IL-6 and tumour necrosis factor 
(TNF)21,22. Although inflammageing was initially attrib-
uted to the accumulation of non-​immune senescent 
cells, recent evidence has highlighted T cells as major 
drivers of this age-​associated inflammation18,23,24. Our 
studies using a mouse model with T cell-​specific dele-
tion of the mitochondrial transcription factor A (TFAM) 
have shed light on the role of T cells in inflammageing. 
These mice mimic the age-​related mitochondrial dys-
function and glycolytic reprogramming that occur in 
T cells from older mice. Indeed, TFAM-​deficient T cells 
show several features of immunosenescence, such as 
impaired TCR-​dependent proliferation, the acquisition 
of an extremely differentiated TH1-​type phenotype by 
effector CD4+ T cells25 and enhanced vulnerability to 
infections23. Remarkably, these mice present with prema-
ture inflammageing23, accompanied by dramatic cardi-
ovascular, metabolic and cognitive dysfunction, overall 
leading to a lifespan reduction of 50%. These observa-
tions establish a causal link between T cells, inflammage-
ing and age-​related disorders, turning this mouse model 
into an innovative platform to study the consequences of 
the age-​related decline in T cells. The detrimental role 
of an age-​associated upregulation of the expression of 

glycolytic genes in T cells has also been supported by an 
alternative experimental approach based on the changes 
in expression of certain microRNAs (miRNAs) that are 
important molecular regulators of T cell function dur-
ing ageing. Both miR-146a and miR-155 are induced 
upon T cell activation, the first as a negative regulator 
and the latter as an enhancer of the immune response. 
Interestingly, the global deletion of miR-146a in a mouse 
model causes life-​shortening chronic inflammation. The 
molecular mechanism mediating this dramatic pheno-
type in response to the ablation of miR-146a involves the 
skewing of T cell metabolism towards aerobic glycolysis, 
which is dependent on the T cell-​specific expression of 
miR-155 (ref.26).

T cells may contribute to age-​related diseases by sev-
eral mechanisms (Fig. 1). First, the sustained production 
of cytokines, mainly interferon-​γ (IFNγ) and TNF, by 
age-​associated T cells directly contributes to inflam-
mageing and can promote the activation of a senescence 
programme in neighbouring and distant cells23. In turn, 
the senescence-​associated secretory phenotype (SASP) 
boosts inflammation and promotes TH17 and TH1 cell 
differentiation27, fuelling a feedback loop that ultimately 
contributes to tissue damage (Fig. 1a). Moreover, the 
secretion of granzyme K by exhausted T cells aggravates 
the SASP of senescent cells18. Second, dysfunctional 
T cells could also be inefficient in senescence surveillance 
function, thus failing in the clearance of irreversibly 
damaged cells that become sensescent28 (Fig. 1b). Third, 
a loss of self-​tolerance is driven not only by the increased 
cytotoxicity of senescent CD8+ T cells but also by the fact 
that senescent CD4+ T cells acquire cytotoxic properties 
and become able to secrete cytotoxic granule contents 
that directly damage cells in the tissues5,13,29 (Fig. 1c). Last, 
T cells can indirectly participate in age-​associated dis-
orders through the modulation of gut homeostasis30,31 
(Fig. 1d). Given the paramount role of immune cells in 
age-​related diseases, the ageing process could directly 
result from a breakdown in immune tolerance mech-
anisms and/or from immune system hyperactiva-
tion. Below, we consider the specific roles of T cells in 
different age-​related diseases (Fig. 2).

T cells in cardiovascular disorders
Cardiovascular disorders (CVDs) are the major cause 
of death in the world. The incidence of these diseases, 
which include aortic aneurysm, heart failure, myocardial 
infarction and ischaemic stroke, dramatically increases 
with age. As part of their pathogenesis, numerous CVDs 
present with increased systemic and organ-​specific 
immune activation. Indeed, during the formation of the 
atherosclerotic plaque, macrophages uptake low-​density 
lipoprotein (LDL) particles, secrete pro-​inflammatory 
molecules and eventually become foam cells, which are 
lipid-​laden macrophages known to form the core of the 
plaque and to promote its instability32. This facilitates 
further recruitment of other immune cells, includ-
ing T cells. Within the plaque, infiltrating T cells can 
tune macrophage polarization through the secretion of 
pro-​inflammatory molecules, such as TNF or IFNγ, or 
via anti-​inflammatory cytokines such as IL-10. Thus, 
T cells can either act as positive or negative modulators 
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of atherosclerotic plaque formation and maintenance33 
(Fig.  2). Together with atherosclerosis, hyperten-
sion can be the starting point of many CVDs. In this 
regard, T cells have emerged as controllers of the blood 
pressure in mouse models of angiotensin II-​induced 
hypertension34.

Different CD4+ T cell subpopulations accumulate 
in human atherosclerotic plaques35. Depending on the 
subset, they can either exert a protective role or become 
pathogenic through the acquisition of a TH1 cell pheno-
type and contribute to the progression of the disease33,36,37 
(Fig. 2). A TH1-​type cytokine profile was identified by his-
tological techniques in human atherosclerosis samples36 
and the direct causative role of TH1 cells was established 
in T-​bet-​deficient atherosclerotic mice, in which a 
switch from a TH1-​type towards a TH2-​type response 
leads to reduced atherosclerosis37. Moreover, as binding 
of oxidized LDL to CD69 is known to maintain human 
and mouse T cells in an anti-​inflammatory state, a 
decrease in T cell CD69 levels correlates with increased 
pro-​inflammatory cytokine production and with the 
presence of subclinical atherosclerosis in humans38. 
In addition, CD4+ T cells expressing the TNF-​related 
apoptosis-​inducing ligand (TRAIL) promote plaque 
instability by inducing apoptosis of vascular smooth 
muscle cells that express the death receptor 5 (TRAIL 
receptor 2)39. The pathogenic role of pro-​inflammatory 
CD4+ T cells is not restricted to atherosclerosis. In fact, 
in older mice, CD4+IFNγ+ T cells accumulate in the heart 
and in the heart-​draining lymph nodes and contribute to 
myocardial impairment by promoting inflammation40.

Although the pro-​atherogenic role of CD4+ TH1 cells 
has been established, the role of CD8+ T cells remains 

controversial. A particular subtype of peripheral CD8+ 
T cells that display enhanced proliferation and express 
naive markers, despite expressing CD95 and secret-
ing pro-​inflammatory cytokines, has been associated 
with increased CVD severity in humans and pro-
motes atherosclerosis when transferred into mice41. In 
APOE-​deficient mice fed a high-​fat diet (HFD), CD8+ 
T cells contribute to the progression of atherosclero-
sis by inducing apoptosis in endothelial cells and vas-
cular smooth muscle cells via perforin and granzyme 
B release, and antibody-​mediated depletion of CD8+ 
T cells ameliorates the disease42. Strikingly, the pres-
ence of CD8+ T cells confers protection against lesion 
instability by inducing FAS/FASL-​mediated apoptosis 
of macrophages and TH1 cells in advanced atheroscle-
rotic plaques from Ldlr–/– mice, suggesting that these 
cells could play a dual role depending on the stage of the 
disease43. Similarly, IFNγ-​producing CD8+CD43+ T cells 
promote the development of abdominal aortic aneurysm 
lesions in an elastase-​induced murine model44.

Dysfunctional TFH cells are beginning to be recog-
nized as contributors to CVDs. ATF3-​dependent expres-
sion of PDL1 in marginal zone B cells supresses TFH cell 
function, decreasing the size of aortic plaques in a mouse 
model of a high-​cholesterol diet45. Reinforcing this idea, 
the conversion of a fraction of Treg cells into TFH cells has 
been shown to promote atherogenesis, involving the 
increased expression of IL-6Rα and the downregulation 
of IL-2Rα and phosphorylated STAT5 (ref.46).

Reduced numbers of circulating Treg cells are associ-
ated with the development of acute coronary events, but 
not stroke, in humans47. In addition, a decline in Treg cell 
function occurs in many CVDs, such as atherosclerosis, 
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Fig. 1 | Molecular basis of T cell contribution to inflammageing and age- 
related diseases. Accumulating data highlight that dysregulated T cell 
responses contribute to inflammageing and unhealthy ageing through 
several mechanisms. a | Metabolic T cell dysfunction associated with 
ageing leads to acquisition of a pro-​inflammatory T cell phenotype. 
The resulting T cell subsets secrete cytokines that promote the accumulation 
of senescent cells, which are characterized by the senescence-​associated 
secretory phenotype (SASP). SASP-​associated mediators fuel T helper 1 
(TH1) cell and TH17 cell differentiation, exacerbating inflammation. 

b | Dysfunctional T cells lose their ability to effectively clear senescent 
cells from tissues. Accumulation of senescent cells contributes to 
inflammation and promotes tissue damage. c | Cytotoxic CD8+ and 
CD4+ senescent T cells indiscriminately recognize and destroy cells in 
tissues, highlighting the importance of immune tolerance mechanisms. 
d | Imbalanced T cell activity in the gut mucosa can compromise intestinal 
barrier integrity, allowing bacteria to translocate into the circulation and 
contributing to systemic inflammation. IFNγ, interferon-​γ; TNF, tumour 
necrosis factor.
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myocardial infarction and aneurysm, and the severity 
of these diseases negatively correlates with total Treg cell 
numbers or function in mice and humans48–50. Treg cells 
can prevent CVDs by several mechanisms33,48 (Fig. 2). 
For instance, Treg cells elicit anti-​atherogenic effects by 
reducing the number of inflammatory macrophages, 
by blocking foam cell formation in mouse models of 
atherosclerosis51 or through IL-10 and transforming 
growth factor-​β (TGFβ)-​dependent suppression of 
TH1 cell proliferation52. In mice, Treg cells can also pro-
mote atherosclerosis regression by secreting IL-10 that 
induces efferocytosis in the plaque and enhances the 
pro-​resolving capacity of macrophages53. In a mouse 
model of aneurysm, Treg cells downregulate MMP2 
and MMP9 metalloproteinase activity and the release 
of pro-​inflammatory cytokines such as CCL2 and IL-6, 
decreasing the incidence of aneurysms54. A specific 
subset of Treg cells overexpressing the collagen-​binding 
matrix protein SPARC ameliorate cardiac rupture after 
myocardial infarction in mice, through the induction 
of collagen production and maturation55. Treg cells can 
also promote cardioprotection by inducing cardio-
myocyte proliferation through secretion of molecules 
such as insulin-​like growth factor 2 (IGF2), matrilin 2  

(MATN2), fibrinogen-​like 2 (FGL2) and IL-33 in murine 
models of myocardial infarction56.

Autoreactive T cells also play a role in certain CVDs 
(Fig. 2). T cells recognizing the LDL core protein APOB 
initially present a regulatory transcriptional profile 
that progressively converts into a pro-​inflammatory  
TH1/TH17 cell phenotype in mice and humans with 
atherosclerosis. Accordingly, adoptive transfer of these 
cells fails to protect against plaque formation in Apoe–/– 
mice57. In this regard, Treg cells recognizing the α-​myosin 
heavy chain (also known as myosin 6) play a cardiopro-
tective role and improve cardiac function early after 
myocardial infarction58.

The role of invariant natural killer T (iNKT) cells in 
CVDs is still open to discussion. The treatment with a 
CD1 lipid antagonist that inhibits iNKT cell activation 
ameliorates atherosclerosis by decreasing necrosis and 
inflammation in Apoe–/– mice59. Similarly, a reduced size 
of atherosclerotic lesions is observed in Cd1–/–Apoe–/– 
mice60. Strikingly, cardiac remodelling is accelerated in 
hypertensive CD1-​deficient mice owing to a decrease in 
IL-10, which in turn promotes fibroblast activation61.

Age-​associated T cells have also been implicated 
in the pathogenesis of CVDs. In the blood of older 
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humans, increased numbers of CD4+ T cells produc-
ing high levels of IL-17 and IFNγ, and bearing senes-
cence features such as reduced expression of CD28 
and increased levels of NKG2D, have been associated 
with metabolic risk factors for CVDs62. In fact, recent 
studies in humans established a correlation between 
cytomegalovirus seropositivity — a well-​known driver 
of T cell senescence — and increased risk of suffering 
strokes, myocardial infarction, chronic heart failure and 
death owing to cardiovascular events63,64. Moreover, the 
presence of senescent T cells in the blood circulation 
has been associated with repetitive coronary events in 
patients with acute coronary syndrome or with detri-
mental cardiovascular episodes62,65, and also predicts 
the development of cardiovascular events or mortality 
in patients with chronic heart failure66,67. Interestingly, 
a deeper characterization of circulating senescent 
T cells from patients with coronary artery disease and 
high risk factors for atherosclerosis has revealed that, 
in addition to pro-​inflammatory cytokines, these cells 
express cytotoxic markers such as granzyme A, gran-
zyme B and granulysin68. Importantly, different T cell 
subsets with features of senescence and exhaustion 
are present in human atherosclerotic plaques35. In fact, 
chronically activated senescent-​like T cell clones in the 
atherosclerotic plaques of patients with coronary syn-
dromes have been associated with plaque instability69. 
Interestingly, the transition towards a senescent pheno-
type in patients with acute coronary syndrome requires 
the proteasomal degradation of pro-​apoptotic molecules 
such as BIM, BAX and FAS70. A causal pathogenic role of 
age-​associated T cells in CVDs has been demonstrated 
in mice. In an angiotensin II model of hypertension, 
adoptive transfer of T cells from aged mice into young 
recipients accelerates cardio-​renal damage through 
increased secretion of IFNγ, which promotes inflamma-
tion and fibrosis71. Recently, age-​related cardiovascular 
alterations including aortic dilation, partial dissections 
and myocardial dysfunction have been reported in mice 
with premature T cell ageing caused by mitochondrial 
dysfunction23. These data suggest that senescent T cells 
could directly promote the development of CVDs.

T cells in metabolic dysfunction
During human ageing, the excessive fat deposition that 
occurs as a consequence of sustained calorie intake, 
in combination with gradual loss of muscle mass and 
insufficient physical activity, can ultimately precipitate 
chronic pathological conditions72. Importantly, T cells 
that reside in the adipose tissue are known to influence 
age-​associated metabolic disorders, including obesity73,74, 
type 2 diabetes75 and insulin resistance76.

CD4+ and CD8+ T cells specifically accumulate in 
visceral adipose tissue (VAT) and contribute to the 
pathology seen in aged mice77, as well as in obesity and 
related metabolic conditions74. In this context, adipose 
tissue-​resident T cells are more likely to undergo TH1 
cell differentiation, becoming detrimental producers of 
IFNγ74,78,79. In the initial stages of diet-​induced obesity 
(DIO) in mice, CD4+ T cells exert a protective effect on 
glucose homeostasis, leading to an early improvement in 
glucose tolerance and insulin sensitivity and controlling 

weight gain when transferred into HFD-​fed mice lacking 
T cells. These metabolic improvements have been asso-
ciated with the TH2 cell polarization of the transferred 
T cells78. However, expansion of TH1 cell78 and TH17 cell80 
populations in VAT promoted obesity-​associated insulin 
resistance in humans and mice. Signal transducer and 
activator of transcription 3 (STAT3) is critically required 
for TH17 cell differentiation and its functional ablation 
in T cells effectively prevents VAT inflammation and 
DIO, leading to improved insulin sensitivity and glu-
cose tolerance in mice76. A massive infiltration of CD8+ 
T cells occurs in the adipose tissue of HFD-​fed mice with 
systemic insulin resistance, as a concomitant effect of a 
reduction in TH2 cells and Treg cells73. The secretion of 
perforin by CD8+ T cells is important to limit the accu-
mulation of IFNγ-​producing CD4+ and CD8+ T cells as 
well as the expansion of CD8+ T cells in inflamed VAT81. 
By contrast to this role of TH1 cells and TH17 cells in 
mediating obesity-​associated insulin resistance, other 
studies suggest that predominant TH1 cell responses are 
involved in adipose tissue remodelling and lipolysis. 
For instance, results from our laboratory indicate that 
the differentiation towards a TH1 cell phenotype due to 
severe T cell mitochondrial dysfunction in mice results 
in an increased VAT lipolytic rate23. Accordingly, mice 
deficient in T-​bet display increased intra-​abdominal 
adiposity as well as decreased energy expenditure and 
physical activity, yet their glucose tolerance and insu-
lin sensitivity are improved in comparison with their 
control counterparts82.

Treg cells with a unique transcriptomic signature are 
strikingly enriched in the VAT of lean mice compared 
with the VAT of obese mice with insulin resistance77,83–85 
(Fig. 3). The distinctive transcriptomic signature of the 
VAT-​specific Treg cell population that accumulates with 
age, which includes the upregulated expression of Pparg, 
Gata3, Klrg1, Ccr2 and ll1rl1 transcripts, has been found 
to appear long before their age-​associated expansion77,86 
and to be reinforced until the age of 24 weeks, but grad-
ually attenuated from week 40 (ref.84). By contrast, a dra-
matic shift into a different signature occurs in response 
to obesity, through a mechanism dependent on the phos-
phorylation of a specific residue of PPARγ84. In agree-
ment with this, whereas fat-​associated Treg cells can have 
beneficial effects in improving certain metabolic param-
eters, such as insulin resistance, in DIO79, they negatively 
affect age-​associated metabolic parameters, for example, 
increasing fasting serum glucose and insulin levels as the 
mice age85. Notably, even the age-​associated increase in 
mouse body weight and fat adiposity are reduced upon 
ablation of fat Treg cells85. The accumulation of Treg cells 
in ageing adipose tissue is a multistep process mediated 
by proliferation of certain clones coupled with enhanced 
survival. Transfer experiments using an engineered 
TCR-​transgenic mouse model have revealed that this 
accumulation is driven by Treg cell TCR specificity, with 
an important contribution of IL-33 signalling and the 
expression of FOXP3 and PPARγ86,87. Enhanced IL-33 sig-
nalling in VAT is achieved through different mechanisms. 
First, there is increased expression of the IL-33 receptor 
ST2 (encoded by ll1rl1) by VAT Treg cells compared with 
splenic Treg cells or with conventional CD4+ T cells in 
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the VAT85,86,88. Second, increased IL-33 secretion by stro-
mal cells in VAT is induced by PLZF+ γδ T cell-​derived 
IL-17 (ref.89). Third, there is a striking increase in the frac-
tion of ST2+ cells within the VAT Treg cell compartment 
as a function of age88. Interestingly, IL-33 administration 
can rescue Treg cell numbers and glucose tolerance but is 

unable to improve insulin sensitivity in different models 
of mouse obesity88. In this regard, the increased secre-
tion of TH1 cell-​derived IFNγ, which is dependent on the 
higher expression levels of MHC class II by adipocytes in 
mice with DIO, interferes with the effects of IL-33 on the 
proliferation of Treg cells in fat79.
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Fig. 3 | T cell contribution to adipose tissue inflammation and pathology 
in obesity and ageing. The distinctive early transcriptomic signature 
acquired by regulatory T (Treg) cells in the visceral adipose tissue (VAT) of lean 
mice is enhanced and enriched during the age-​related accumulation of VAT 
Treg cells, whereas this signature is attenuated in late life (right bottom panel). 
By contrast, the VAT-​specific Treg cell transcriptional identity is lost with the 
induction of obesity, concomitant with a dramatic reduction in total Treg cell 
numbers in VAT (right top panel). In the obese state, abundant CD8+ T cells 
drive the recruitment and differentiation of M1-​like macrophages and 
dendritic cells, which in turn promote T helper 17 (TH17) cell differentiation 
that causes insulin resistance by affecting insulin receptor signalling. 
Increased expression of MHC class II molecules on the adipocyte surface 

stimulates interferon-​γ (IFNγ) production by TH1 cells, fostering 
inflammation and interfering with IL-33 signalling. Senescent CD153+PD1+ 
T cells also contribute to inflammation mainly by producing large amounts 
of osteopontin (OPN) that suppress IL-10 secretion by CD4+ T cells. In lean 
adult mice, IL-17 secreted by PLZF+ γδ T cells induces the production of 
IL-33 by stromal cells, enhancing IL-33 signalling through the ST2 receptor 
present on the surface of the VAT-​specific Treg cells. Pro-​inflammatory 
cytokines such as IFNγ and tumour necrosis factor (TNF) that are derived 
from the increased numbers of TH1 cells and CD8+ T cells as well as from 
dendritic cells and M1-​like macrophages negatively affect insulin sensitivity. 
In addition, both in ageing and in obesity, the numbers of γδ T cells and 
invariant natural killer T (iNKT) cells are increased and reduced, respectively.
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Unconventional iNKT cell and γδ T cell popula-
tions are found at higher frequencies in adipose tissue 
compared with other tissues in steady-​state condi-
tions in humans and mice89,90. Studies in both species 
have revealed that in obesity γδ T cells are increased 
and iNKT cells are decreased in the adipose tissue and 
both subsets play a role in the development of insu-
lin resistance89–91. In parallel with what is observed in 
obesity, an age-​associated increase of γδ T cells and 
a decrease of iNKT cells occur in the VAT of mice 
between 5 and 28 weeks of age, concomitant with the 
age-​associated accumulation of VAT Treg cells89 (Fig. 3). 
The balance of IFNγ and IL-10 production by two dis-
tinct subpopulations of adipose tissue-​associated iNKT 
cells has been found to be important for preserving 
metabolic integrity. Whereas IL-10 produced by NK1.1– 
iNKT cells can restore metabolic function in obese mice, 
IFNγ secreted by NK1.1+ iNKT cells stimulates the elim-
ination of macrophages by natural killer cells to limit 
pathogenic expansion of macrophages in lean adipose 
tissue92. Interestingly, a ketogenic diet has recently been 
reported to induce the expansion of a metabolically 
protective γδ T cell subset in VAT that helps to restrain 
fat-​induced acute inflammation93.

The role of senescent T cells has also been stud-
ied in the context of metabolic diseases. In the VAT of 
obese mice, a distinct population of CD4+CD153+PD-
1+CD44hiCD62Llo senescent T cells is enriched and 
contributes to VAT inflammation by strongly activating 
expression of Spp1, which encodes osteopontin16 (Fig. 3). 
Of note, adoptive transfer of these senescent T cells into 
lean VAT can trigger VAT inflammation and insulin 
resistance16, and the removal of senescent T cells from the 
VAT of obese mice leads to improved glucose tolerance 
and insulin sensitivity15. In addition, higher numbers of 
CD4+ and CD8+ senescent T cells (CD44+CD153+) with 
enhanced production of TNF are found in the liver of aged 
mice, in association with higher fasting blood glucose and 
insulin levels17. In humans, the increased frequency of 
CD8+CD57+ or CD8+CD28− senescent T cells in periph-
eral blood has been associated with the development of 
hyperglycaemia94, and functionally impaired senescent 
CD4+ and CD8+ TEMRA cells (CD45RA+CCR7−) are 
significantly increased in the circulation of patients with 
type 2 diabetes95. Hepatic senescent CD8+CD28−CD57+ 
T cells producing TNF, granzyme B and perforin are also 
increased in patients with type 2 diabetes and positively 
correlate with fasting blood glucose17.

T cells in neurodegeneration
Thanks to the presence of the blood–brain barrier (BBB), 
the brain is probably the organ that is most isolated 
from the external environment. This isolation precludes 
the entry of exogenous toxic agents that could damage 
neurons. As low numbers of peripheral immune cells, 
including T cells, are found in the brain during homeo
static conditions, their role has remained underesti-
mated for many years. However, potential immune cell 
entry into the brain parenchyma through the recently 
discovered meningeal lymphatic vessels96,97 opens up 
the possibility of a wider range of T cell functions, even 
in the healthy brain, and growing evidence points to 

infiltrating T cells as regulators of important functions 
in the brain during pathology (Fig. 4). The identification 
of BBB breakdown as an ageing feature98 suggests that the 
influx of T cells in the brain may be increased in older 
people. Furthermore, enhanced BBB breakdown occurs 
in age-​associated neurodegenerative diseases99. Although 
the precise mechanisms mediating increased T cell infil-
tration during ageing remain to be elucidated, previous 
knowledge in neuroinflammatory diseases is starting to 
shed light on these. For instance, in patients with multiple 
sclerosis, TH17 cells directly disrupt the BBB and infiltrate 
the central nervous system through a mechanism that is 
mediated by IL-17 and IL-22 signalling100.

Recent evidence suggests that tissue resident 
memory T cells (TRM cells) populate the white matter 
of middle-​aged healthy humans101,102. In particular, 
CD4+CD69+CD103lo TRM cells are observed, together 
with CD8+CD69+CD103+ T cells that express low levels 
of activation markers and increased levels of chemokine 
receptors for homing to peripheral inflammatory sites, 
such as CX3CR1 and CCR5, as well as expressing PD1 
and CTLA4 (ref.101). Other subsets of T cells also popu
late the brain parenchyma in healthy humans. These 
T cells are CD4+CCR5hi and express the VCAM1 ligand 
VLA4, which facilitates against-​flow crawling in search 
of extravasation-​permissive sites. Upon VLA4–VCAM1 
binding, these T cells secrete granzyme K to induce local 
ICAM1 aggregation, facilitating transcellular endothe-
lial transmigration102. In mice, resident TH1 cells, TH2 
cells and Treg cells patrol the epithelium of the choroid 
plexus and secrete IFNγ upon brain injury to regulate 
the entry of leukocytes103. These observations highlight 
a potential role for T cells in homeostasis and suggest 
that alterations in their levels or function may drive the 
altered cognition that occurs in older individuals.

Evidence for a role of T cells in regulating cognition 
has come from mechanistic studies in mice. Mice lacking 
T cells and B cells present with altered learning behav-
iour but preserved motivation and motor ability104,105. 
During performance of cognitive tasks, IL-4-​producing 
T cells accumulate in the meninges. Consistent with 
the role of T cell-​secreted IL-4 in maintaining menin-
geal myeloid cells in a resting state, IL-4-​deficient mice 
harbour inflammatory myeloid cells and show cog-
nitive impairment, which can be reversed by adoptive 
transfer of wild-​type T cells106. Strikingly, microglial 
cells also require CD4+CD69+ brain TRM cells to fully 
mature107. T cells can also directly control the appearance  
of anxiety-​like behaviours as well as the development of  
proper social behaviour. Meningeal T cells, which are 
presumably responsible for IFNγ secretion, regulate 
neuronal connectivity and social behaviour by directly 
signalling to inhibitory neurons and, consequently, IFNγ 
receptor-​knockout mice show profound social deficits108. 
In physically stressed animals, release of leukotriene 
B4 causes mitochondrial fission in CD4+ T cells. This 
induces anxiety and depression via T cell-​derived xan-
thine release, which activates the adenosine A1 recep-
tor in oligodendrocytes of the amygdala109. Similarly, 
meningeal γδ T  cells expressing CXCR6 promote 
anxiety symptoms through IL-17 signalling in cortical 
neurons110, demonstrating that an exquisite tuning of 
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these signals is required to guarantee brain homeosta-
sis and to preserve cognition. In addition, brain T cells 
could play a direct role in pathological conditions with 
impaired neurological function (Fig. 4). Recent studies 
have found increased numbers of IFNγ-​producing CD8+ 
T cells in neurogenic niches from older mice, suggesting 

a potential contribution to neurodegeneration111. After 
experimental ischaemic stroke, there is an accumulation 
of either brain-​resident CD44hiCD62Llo effector mem-
ory CD8+ T cells112 or double-​negative (CD3+CD4–CD8−) 
T cells113, which favours inflammation and modulates 
microglial function. Accordingly, our results suggest that 
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metabolically stressed T cells with a pro-​inflammatory 
phenotype cause cognitive and coordination alterations23.

Increased numbers of clonally expanded brain CD8+ 
TEMRA cells are detected in the brains of patients with 
Alzheimer disease, with these cells expressing TCRs that 
recognize two different antigens of Epstein–Barr virus. 
Remarkably, the presence of these cells has been inversely 
correlated with cognitive capacity114. Immunogenic 
responses against toxic proteins that accumulate in 
neurodegenerative diseases have been observed as well. 
In this regard, strong amyloid-​β-​specific T cell responses 
have been detected upon in vitro stimulation of periph-
eral blood mononuclear cells isolated from patients with 
Alzheimer disease or from healthy older individuals, 
with the most immunogenic epitopes mapping to amino 
acids 16–33 of the amyloid-​β peptide115. Strikingly, despite 
the presence of T cells specific for numerous self-​antigens 
(such as amyloid precursor protein, amyloid-​β, tau, 
α-​synuclein and transactive response DNA binding pro-
tein) in patients with Alzheimer disease, no notable dif-
ferences compared with healthy age-​matched individuals 
have been identified116. The role of T cell-​mediated auto-
immunity is better established in patients with Parkinson 
disease. In these patients, α-​synuclein-​derived epitopes 
trigger the development of specific T cells that drive effec-
tor and cytotoxic immune responses, even at preclinical 
stages of the disease117,118.

The role of Treg cells in the progression of neuro-
degenerative diseases remains controversial (Fig. 4). 
Transient conditional depletion of Treg cells can pro-
mote amyloid-​β plaque clearance in a mouse model of 
Alzheimer disease by inducing the recruitment of leuko-
cytes through the choroid plexus119. In a different study, 
transient depletion of Treg cells has been found to limit 
the recruitment of microglia towards amyloid plaques 
and accelerate the onset of memory loss without alter-
ing amyloid-​β clearance. Peripheral administration of 
IL-2 can amplify the number of Treg cells and restore the 
number of plaque-​associated microglia, improving cog-
nitive functions120. These studies suggest that resident 
microglia and monocyte-​derived microglia differen-
tially contribute to phagocytosis of amyloid-​β aggre-
gates and point to Treg cells as important regulators of 
both cell populations during early stages of Alzheimer 
disease. In experimental ischaemic stroke, Treg cells infil-
trate the brain in response to CCL1 and CCL20, and 
promote neurological recovery through amphiregulin 
(AREG)-​mediated inhibition of IL-6–STAT3 signalling 
in reactive astrocytes. These Treg cells express unique 
genes related to the central nervous system such as 
Hrt7, which encodes the serotonin receptor 5-​HT7, and 
their amplification is dependent on IL-2, IL-33 and sero
tonin signalling121. In this disease model, Treg cells also 
counteract neuroinflammation through IL-10-​mediated 
suppression of TNF and IFNγ release by microglia and 
infiltrating immune cells122.

T cells in tissue repair and regeneration
T cells contribute to barrier tissue maintenance as well 
as to the repair and regenerative responses that restore 
tissue homeostasis after sterile or infectious damage. In 
this context, age-​associated alterations in T cell numbers 

and function may be associated with the poorer tissue 
regeneration that is seen with ageing.

T cell control of barrier tissue maintenance. Immune 
responses at barrier tissues need to protect against 
harmful agents and environmental insults but ensure 
tolerance to commensal microorganisms and innocuous 
antigens. Indeed, TRM cells123, Treg cells124 and γδ T cells125 
are abundant in the skin and the intestine, the two larg-
est barrier tissues in mammals. Several T cell subsets 
have been implicated in barrier tissue maintenance, and 
chief among these are γδ T cells. Although present in 
low frequency in circulating blood and secondary lym-
phoid organs, γδ T cells are plentiful in barrier tissues125. 
They produce regenerating factors such as keratinocyte 
growth factor (KGF) and IGF1 to regulate tissue home-
ostasis and promote epithelial cell proliferation126,127. 
Intestinal γδ T cells also promote epithelial integrity 
by secreting mediators such as TGFβ1, TGFβ3 and 
prothymosin β4 (ref.128). Of note, the proportions of 
pro-​healing γδ T cells and levels of anti-​inflammatory 
mediators diminish in the gut of aged mice129. Pro-​
inflammatory and colitogenic TH17 cell responses occur-
ring at controlled levels can also contribute to maintain 
gut tissue integrity130, but need to be tightly modulated 
by signals such as IL-33 (refs131,132). In the skin, cytotoxic 
CD8+ T cells expressing IL-17 or IFNγ accumulate in 
steady-​state conditions in non-​human primates and 
in humans, which suggests a role for this T cell subset in 
tissue homeostasis133.

Effects of T cells on tissue repair after injury. γδ T cells 
promote wound healing and limit tissue damage in the 
skin of mice134 and humans135 by producing factors such 
as KGF and IGF1. Importantly, in contrast to T cells 
isolated from acute human wounds, both αβ and γδ 
T cells from non-​healing chronic skin wounds that fre-
quently affect older patients and patients with diabetes 
are functionally impaired135. In addition, wound healing 
is impaired in the skin of aged mice owing to impaired 
function of dendritic epidermal T cells, which have the 
ability to promote re-​epithelialization after injury136.

Treg cells have also been implicated in diverse repair 
and maintenance processes, including, for instance, 
skin wound healing137, skeletal muscle protection138,139 
or epithelial proliferation during lung recovery140. The 
reparative potential of Treg cell-​secreted AREG, a ligand 
of the epidermal growth factor receptor, has been proven 
in various models, including muscle and lung injury141,142 
and colitis143. Treg cells also facilitate lung repair after 
injury by secreting KGF and inducing epithelial cell 
proliferation144. Strikingly, mature Treg cells in zebra
fish infiltrate regenerating tissues, undergo population 
expansion and produce organ-​specific regenerative fac-
tors, namely neuregulin 1 in the heart, IGF1 in the eye 
and neurotrophin 3 in the spinal cord145.

In mice, skin commensals also drive the accumula-
tion of CD8+ T cells that predominantly secrete IL-17 
rather than IFNγ133 and can accelerate wound healing 
in the skin146. A decline in such T cell responses may 
occur in aged individuals and contribute to impaired 
wound healing, and this will be an interesting area for 
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future research. Ageing accelerates the accumulation 
of CD8+ T cells in the circulation that display highly 
cytotoxic senescent phenotypes and this could drive 
immune-​mediated pathology in human skin lesions147,148.

Regarding bone regeneration, the age-​associated loss 
of bone mass represents a problem for the older popu-
lation and, indeed, bone fractures heal less effectively 
in older mice and humans149. Studies in a humanized 
mouse model involving the transfer of human peripheral 
blood mononuclear cells and subsequent osteotomy149 
showed reduced bone volume fraction and mineral 
density post surgery in mice reconstituted with higher 
proportions of terminally differentiated TEMRA cells. 
This supports the importance of a more naive T cell 
compartment for the healing capacity of bone.

T cell regulation of stem cells controls tissue regenera-
tion. Balanced self-​renewal and differentiation of stem 
cells is crucial for tissue homeostasis and can be highly 
influenced by T cell-​derived cytokines. Consistently, 
the contribution of different T cell subsets to stem cell 
function is paramount in tissues with high renewal 
demand. In this regard, skin Treg cells expressing high 
levels of the Notch ligand Jagged 1 directly drive Notch-​
dependent hair follicle stem cell proliferation150. By 
contrast, pro-​inflammatory cytokines enhance mus-
cle stem cell expansion151, suggesting that fine-​tuning 
between the action of TH1 cells and Treg cells is required 
to progress through the distinct stages of muscle regen-
eration. Although anti-​inflammatory cytokines such as 
IL-10 promote epithelial integrity and intestinal stem cell 
(ISC) renewal152 (Fig. 5), pro-​inflammatory cytokines can 
induce ISC differentiation and may promote gut barrier 
disruption. In support of this, T cell-​mediated intesti-
nal damage and IFNγ-​induced ISC apoptosis in murine 
and human organoids have recently been reported153,154, 
whereas low concentrations of TNF boost mucosal 
development in human fetal intestines155. Hence, an 
excessive pro-​inflammatory environment can lead to 
stem cell depletion152, which may drive age-​related 
changes in intestinal architecture and functionality.

T cell regulation of gut microbiota
A dysregulated gut microbiota has been linked with 
unhealthy ageing and age-​related chronic inflammatory 
diseases156. Considering the role of T cells in adjusting the 
ISC fate and gut integrity152, together with their capac-
ity to control the gut microbiota, the microbiota–T cell  
interaction has turned into a promising therapeutic 
target in age-​related diseases. T cells promote local, 
fine-​tuned IgA responses in germinal centres that guar-
antee tolerance to commensal microorganisms157. At a 
glance, germinal centre responses require a balanced 
contribution of TH17 cells and Treg cells, which acquire 
TFH cell158 and T follicular regulatory cell159 phenotypes 
in Peyer’s patches, respectively. TFH cell differentiation in  
mouse germinal centres is also orchestrated by a subset 
of γδ T cells expressing CXCR5 (ref.160). Importantly, 
MYD88 signalling and the expression of the transcrip-
tion factor MAF in Treg cells prevent exacerbated TH17 
cell responses and promote IgA-​dependent responses 
that enforce commensalism161,162. Recently, iNKT cells 

have been shown to control the IgA repertoire via 
regulation of the gut microbiota, and iNKT cells also 
regulate intestinal Treg cell function163. Taken together, 
these findings suggest that T cells help to maintain a 
healthy and balanced gut microbiota, and dysregulated 
T cell responses leading to gut dysbiosis164 may underpin 
inflammatory conditions associated with ageing.

Indeed, recent research has identified microbial dys-
biosis, gut hyperpermeability and bacterial translocation 
as instrumental to late-​life health165. Defective germinal 
centres and defects in antigen-​specific IgA are seen in 
older people166, and dysfunctional TFH cell and exces-
sive T follicular regulatory cell activity in the germinal 
centres of aged mice may affect gut microbiome remod-
elling during ageing167,168. The loss of host–microbiota 
symbiosis, along with the breakdown of the intestinal 
barrier during ageing, could prompt gut bacterial prod-
ucts to spread systemically, contributing to inflammage-
ing and generating a pathological feedback loop that 
amplifies this unresolved inflammatory response169,170 
(Fig. 5). Notably, disturbed gut microbial communi-
ties and bacterial translocation in individuals infected 
with HIV correlate with the prevalence of age-​related 
comorbidities. Mechanistically, these factors chronically 
stimulate T cells, which could contribute to immuno
senescence and frailty in the host171,172. Nonetheless, 
T cell-​dependent IgG responses against the gut micro-
biota have been found to increase with age in mouse 
peripheral blood, suggesting a protective mechanism 
to prevent systemic damage in an event of bacterial 
traslocation173. Hence, T cells are potential regulators 
of older-​age wellness by modulating host–microbial 
symbiosis.

The disrupted configuration and metabolic activity 
of the intestinal microbiota have emerged as central 
players in numerous non-​communicable inflammatory 
pathologies, with special emphasis on age-​associated 
diseases such as obesity, atherosclerosis and neuro
degenerative disorders. A well-​balanced mutual dia-
logue between T cells and microbiota is essential for host 
metabolism. CD4+ T cell control of microbiota has been 
observed to adjust host glucose and fat metabolism174 
and to confer protection against obesity30. Furthermore, 
microbiota-​specific CD4+ and CD8+ T cells improve 
HFD-​induced insulin resistance by restoring the gut 
microbiota175. Strikingly, gut dysbiosis induced by both 
a HFD and a ketogenic diet results in the depletion 
of intestinal TH17 cells, which are known to attenuate 
metabolic syndrome176,177. Related to this, γδ and TH17 
T cells have been recently reported to limit gut dysbiosis 
and bacterial translocation in obese mice through the 
IL-17 and IL-23/IL-22 axes31,178,179. In fact, the TH17 cell 
axis has also emerged as a major therapeutic target to 
prevent cardiovascular events, in a study showing that 
restoring gut microbiota sensitive to a high-​salt diet 
improved hypertension by modulating the TH17 cell 
subset180. In the same direction, the IL-23/IL-22 axis 
may contribute to gut microbiota homeostasis, lead-
ing to protection from diet-​induced atherosclerosis181. 
Additionally, a boost of intestinal Treg cell responses 
ameliorates atherosclerotic lesions182 and post-​ischaemic 
neuroinflammation183, posing the T cell–microbiota 

Dysbiosis
Abnormal shifts in the 
microbiota composition and  
in the associated microbiota-​ 
derived metabolites.

Bacterial translocation
The leakage of viable bacteria 
and/or their by-​products  
from the intestinal lumen  
to peripheral tissues, such as 
the mesenteric lymph nodes, 
the adipose tissue or the liver.
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axis as a target for the treatment of cardiovascular and 
neurological pathologies.

Given the relevance of gut dysbiosis in age-​related 
chronic diseases and the tight and reciprocal relation-
ship between T cells and microbiota, further research 
is needed to define the precise role of T cells in ageing 
disorders through the control of the gut microbiota.

T cell-​based immunotherapies
Strategies that target pathogenic T cells could open up new 
therapeutic avenues for age-​associated diseases (Fig. 6).  
These approaches range from using broadly immuno-
suppressive drugs, such as calcineurin inhibitors or TNF 
antagonists, to the use of anti-​CD3 antibodies to directly 
target T cells. More sophisticated approaches could selec-
tively remove pathogenic, highly activated or senescent 
T cells. With respect to this, vaccination with the CD153 
antigen has been validated as a long-​lasting approach 
to prevent the accumulation of senescent T cells in the 

adipose tissue and to ameliorate obesity-​related para
meters in mice15. On the other hand, T cell-​dependent 
removal of senescent cells can be promoted by using engi-
neered T cells expressing a chimaeric antigen receptor 
that enables them to specifically recognize and remove 
senescent cells184. Additionally, the immune response can 
be manipulated by using immune checkpoint regulators. 
These strategies, which have revolutionized the field of 
immunotherapy for cancer and autoimmunity, could also 
have a place in the field of geroscience185,186.

Novel strategies that target metabolic pathways in 
specific T cell subsets have also emerged in recent years. 
Regulation of immunity through small molecules or 
the diet has already been proposed to treat metabolic 
disorders187, autoimmunity188 or inflammatory diseases189. 
Future work is required to investigate whether such 
approaches are also useful in age-​related diseases (Fig. 6). 
Metformin treatment induced autophagy in CD4+ T cells 
and promoted their skewing towards a non-​inflammatory 
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inflammatory pathologies. Maintenance of gut homeostasis is 
coordinated by the activity of intestinal T cells. The fine-​tuned secretion of 
anti-​inflammatory and pro-​inflammatory cytokines by T cells ensures 
balanced intestinal stem cell (ISC) self-​renewal and differentiation that 
support the high turnover rate of the intestinal epithelium. In addition, the 
pro-​maintenance roles of regulatory T (Treg) cells, T helper 17 (TH17) cells and 
γδ T cells favours tissue homeostasis and restricts the leakage of microbially 
derived products. On the other hand, a homeostatic T follicular helper (TFH) 
cell to T follicular regulatory (TFR) cell ratio, together with the contribution 
of TH17 cells, Treg cells and γδ T cells, orchestrate fine-​tuned germinal centre 
responses, which establish host–microorganism symbiosis through the 

secretion of microbiota-​specific IgG and local high-​affinity IgA from plasma 
cells. Nonetheless, this mutualistic relationship is lost during ageing owing 
to an aberrant germinal centre T cell composition, which could support 
perturbations in gut microbial communities. Gut dysbiosis enhances gut 
permeability, along with a pro-​inflammatory T cell environment that could 
drive ISC depletion due to excess of differentiation or apoptosis. 
Consequently, bacteria and their by-​products could translocate into 
circulation contributing to inflammageing, which is linked with a myriad of 
age-​related cardiometabolic and neurologic pathologies. AREG, 
amphiregulin; IFNγ, interferon-​γ; IGF1, insulin-​like growth factor 1; KGF, 
keratinocyte growth factor; ProTβ 4, prothymosin β4; sIgA, secreted IgA; 
TGFβ, transforming growth factor-​β; TNF, tumour necrosis factor.
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state, preventing the TH17 cell differentiation observed 
in older mice and improving inflammageing24. Similarly, 
mTOR inhibitors such as rapamycin can elicit important 
immunomodulatory effects on T cells, inhibiting TH1 cell, 
TH2 cell and TH17 cell differentiation while promoting 
Treg cell differentiation190,191. NAD+ precursors improve 
mitochondrial metabolism in exhausted T cells7 and 
prevent inflammageing23.

Finally, microbiota-​based interventions have recently 
flourished as promising anti-​ageing therapies192,193. 
The modulation of the T cell–microbiota crosstalk could 
be exploited to preserve gut integrity and to prevent bac-
terial translocation and its associated inflammageing, 
ultimately delaying age-​related diseases156,194.

Concluding remarks
Recent findings that T cells regulate inflammageing and 
drive systemic senescence suggest key roles for these cells 
in age-​associated diseases. Pro-​inflammatory subsets, 
such as TH1 cells and TH17 cells, are generally linked with 

pro-​ageing events, whereas Treg cells are more likely to 
promote rejuvenating events. However, the role of certain 
T cell subsets can be strongly dependent on the context 
or the tissue. Importantly, the balance of the contribution 
of the different T cell subsets will ultimately dictate the 
global outcome. Among age-​associated T cells, mainly 
senescent T cells stand out as major drivers of self-​tissue 
cytotoxicity and sustained pro-​inflammatory cytokine 
production, promoting the accumulation of senescent 
cells and eventually leading to tissue and organ failure. 
T cell metabolic imbalance is a strong mediator of these 
effects that drive age-​related multimorbidity. Overall, a 
breakdown of immune tolerance resulting from T cell 
malfunctioning might be a major component of many 
conditions that are prevalent in older people. Therefore, 
emerging therapeutic approaches based on T  cell 
immunotherapies are arising as promising key tools to 
delay the onset of age-​associated pathologies.
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Fig. 6 | T cell based-immunotherapies to increase resilience to age-related diseases. Emerging therapeutics aim to 
delay the onset of age-​associated pathologies through the control of T cell responses. These approaches could include a 
wide range of strategies aimed at resetting the immune system, depleting pathogenic T cells or promoting T cell protective 
responses. To dampen pathological T cell activity, general approaches aimed at reducing global T cell function or numbers 
have been proposed. Alternative strategies have been designed to specifically target senescent T cells, for example, 
vaccination against CD153+ cells. Protective T cell responses can be triggered through the modulation of T cell metabolism 
or the implementation of diet and microbiota-​based interventions (for example, calorie restriction mimetics). In addition, 
the administration of immune checkpoint modulators (such as anti-​PD1 antibodies) could modify the outcome of the 
T cell immune response. Finally, the immune system could be exploited to deplete senescent cells by using senolytic 
engineered chimeric antigen receptor (CAR) T cells. SCFAs, short-​chain fatty acids; Treg cells, regulatory T cells.
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