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Abstract

We consider a model where the agents choose a single niche in which

to act such as di¤erent markets, contests or groups. We look for the

existence of a free entry equilibrium in which no agent wishes to switch to a

di¤erent niche. When the integer problem is neglected, continuity su¢ ces

to show existence of equilibrium. We apply this result to the existence of
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a Walrasian equilibrium without Walras�law. When the number of agents

in each niche is an integer, an equilibrium may not exist. Nonetheless, it

does exist when there are two niches only or when payo¤s in each niche

depend only on the number of agents in this niche. Equilibrium payo¤s

may be Pareto dominated.
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1 Introduction

This paper presents a model in which agents decide where to perform their

activities. Think of a �rm deciding to locate a new plant in Shanghai or San

Francisco or a runner deciding which marathon to run, Madrid or NY, or a

professional selecting jobs, academia or business. The payo¤s in San Francisco

and Shanghai may be di¤erent even if the number of agents in these two places

is the same. However, in our model all �rms located in a particular place, say

San Francisco, enjoy identical payo¤s. In particular we assume that there is a

function mapping the distribution of �rms into the payo¤s of di¤erent locations.

The underlaying assumption behind this map is that �rms, contestants or in-

dividuals are identical within each place (i.e. all runners in Madrid�s and NY

marathons are equally able) and equilibrium inside each place yields identical

(expected) payo¤s to all contestants operating within this niche.

Special cases of our model are: entry into an oligopoly, choosing among

contests, rent-seeking versus productive activities, the size of nations and group

formation games. In this literature, the number of alternatives is often limited

to two or three. In our paper, the number of options is just any natural number.

Our �ndings are also related to the existence of Walrasian equilibrium without

Walras law. See next section on the existing literature for more details.

We distinguish between situations in which the number of agents in each

market is not necessarily an integer that we call the Continuous Entry Problem

(CEP) and situations in which the number of agents in each market, job or

contest is an integer, that we call the Discrete Entry Problem (DEP). The

interpretation of the CEP is that either the number of agents is large so the real

number is a good approximation of the integer or that the agents can divide their

time in a continuous way between several activities. DEP deals with strategic

situations in which there are only a few agents that must locate in a single place.

In the CEP, we show that if the function mapping the allocation of agents in

markets to payo¤s is continuous, there is an allocation of agents (an equilibrium)

such that in all locations where the number of agents is positive, payo¤s are
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identical to each other. Also, there are no agents in locations where the payo¤s

are less than other payo¤s.

In the DEP the equilibrium notion is qualitatively identical to CEP but

requiring that in each market there is an integer number of agents. Here things

are much tougher. We prove existence of equilibrium in the case of two locations

or when payo¤s functions in each location depend only on the number of agents

in this location. Equilibrium is not necessarily e¢ cient in terms of payo¤s. And

when payo¤s in a market depend on locations in other markets, it is shown by

means of an example that equilibrium might not exist.

2 Related literature

2.1 Entry in oligopoly

Our model can be interpreted as a two stage model: in the �rst stage �rms

decides to enter or not and in the second stage, the �rm sets quantities or prices,

Mankiw and Whinston (1986) and Dastiar and Marjit (2022). Payo¤ functions

encapsulate the outcome of the second stage. Some entry models assume an

in�nite number of potential entrants and some kind of entry barrier so �nally

only a �nite number of �rms enters into the market. You can interprete our

exogenous number of �rms as the maximum number that a market can support

with non negative pro�ts.1

2.2 Choosing among contests

Our model can be interpreted as a two stage model in which, in the �rst stage,

agents choose in which contests to participate. In the second stage, they exert

e¤ort in the chosen contest. Since the outcome has a random component, payo¤s

1There are papers in which entry and output-setting are simultaneous, see Novshek (1980),

Fraysse and Moreaux (1981) Ushio (1983) and Guesnerie and Hart (1985). In this framework

Corchón and Fradera (2002) and Okumura (2015) study entry in aggregative games. López-

Cuñat (1999) has shown that under a strong concavity assumption on payo¤s, any equilibrium

of two-stage entry Cournot equilibria is an equilibrium of single-stage Cournot entry.
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are expected payo¤s. Previous literature has focused on the choice between

two alternatives. Corcoran (1984) assumes one contest with an opportunity

cost. Mathews and Namoro (2008) and Damiano, Hao and Suen (2012) consider

two mutually exclusive contests. Azmat and Möller (2009) present a model of

two contests with a generalized Tullock contest success function (they claim,

correctly, that their results are easily generalizable to many contests). Finally

Bernergård and Wärneryd (2017) consider a large number of contests and show

that under some conditions free entry equilibrium maximizes total e¤ort.

2.3 Rent-seeking versus productive activities

Our model can be interpreted as a two stage model in which during the �rst

stage agents choose between several rent-seeking and productive activities and in

the second stage they perform activities in the chosen sector. See Usher (1989),

Murphy, Shleifer and Vishny (1991), Acemoglu (1995) and Corchón (2008) for

models where agents choose among two or three alternatives.

2.4 The size of nations

The basic insight of this literature is the trade o¤ between saving costs -which

pushes agents to gather together- and having exactly the public good that you

want -which pushes agents to autarky, see Demange, G. (1994). Alesina and

Spolaore (1997) have analyze the making of nations focusing on this trade o¤

assuming a continuum of agents (like in our CEP). By contrast, Cechlárová,

Dahm and Lacko (2001) assume a �nite number of mobile agents (as in our

DEP). The di¤erence of the latter model with ours is that they only allow

individuals to create a country of his own or joining a neighboring country.

While in our model we take the (�nite) number of (possible) nations as �xed

and leave individuals free to choose their nationality.
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2.5 Existence of Walrasian equilibrium without Walras�

law

A Walrasian equilibrium is just a solution of a set of equations. In this solution

the value of each equation is zero or negative. And if negative, the corresponding

price is zero. Mathematically, this is not exactly an entry problem in which

payo¤s for markets with active participants are equalized and markets with

fewer payo¤s are inactive. But under the assumptions used in the literature

both problems become identical.

2.6 Hedonic and group formation games

In hedonic games payo¤s in each coalition are determined by who is in the coali-

tion see, for example, Drèze and Greenberg (1980), Bogomolnaia and Jackson

(2002) and Pycia (2012). Our model is a special case of hedonic games because

payo¤s just depend on the number of agents in each market. However, our set

up is more general on two counts. On the one hand, for some results, payo¤s

depend on the allocation of all players. These games are called partition games,

see Thrall and Lucas (1963). On the other hand, payo¤s depend on where the

coalition is formed. For instance, payo¤s for selling computers (or running a

marathon) not only depend on the number of �rms involve in this activity but

also on which market (or marathon) they are selling (running). These games are

called group formation games. In these games, the existence of equilibrium has

been proved by Konishi, Le Breton and Weber (1997a, 1997b) who assume that

payo¤s in coalitions depend monotonically on the number of members in this

coalition. Su¢ cient conditions to obtain monotonicity are discussed in the Ap-

pendix. But even in cases in which, in principle, payo¤s are monotonic (linear

Cournot model, Tullock contests), additional considerations such as the exis-

tence of a ceiling in the number of players in each group, like in soccer leagues

or NBA, or the intervention of a regulatory agency when the number of �rms

is small, like the FTC in concentrated markets, may render payo¤s to be non
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monotonic.2

Our results dispense with the monotonicity assumption at the cost of assum-

ing that all agents share the same preferences. However, in our favor it could

be said that in two of our main applications, oligopoly and contests, payo¤s

depend on the number of individuals only when individuals are identical. And

that in teams with heterogeneous agents -soccer, basketball- the name of the

members counts.3

3 The Model

LetN be the number of identical agents andK be the number of markets/contests/jobs

(markets in the sequel). Let nr be the number of agents in market r.

We distinguish two problems. The Continuous Entry Problem (CEP) in

which the n0rs are real numbers and the Discrete Entry Problem (DEP) in which

the n0rs are integers. The �rst problem studies markets in which either agents

are a continuum or tasks are divisible, like some academics who are professors

in several universities at the same academic year. In the second problem, agents

enter one market only.

In the CEP, the set of agents is SC = f(n1; :::; nK) 2 RK+�
PK

j=1 nj = Ng,

i.e. SC is the K � 1 dimensional simplex. In the DEP the set of agents is

SI = f(n1; :::; nK) 2 ZK�
PK

j=1 nj = Ng. When we speak of both problems at

the same time, we will refer to a set S without superscript. In any allocation of

agents, denoted by the vector n = (n1; n2; :::nK) we require that
PK

r=1 nr = N ,

i.e. all agents are allocated to a market. One of these markets can be interpreted

as inaction, i.e. unemployment in the case of labor or no entry in the case of

oligopoly.

Let us introduce payo¤s. Think of a two stage game. In the �rst stage

2Another branch of the literature studies coalition formation, see Marini (2009) for a survey.
3Examples of games played by heterogeneous players in which only the number of players

in each market is payo¤ relevant are the highway game or local public goods �nanced by a

poll tax, see Konishi et al (1997a).
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agents decide to enter in a market. In the second stage, agents take some

actions (output, price, e¤orts, etc.) and payo¤s are delivered.4 In the second

stage, there is always a unique equilibrium (or in case of several equilibria there

is a common selection used by all agents). Thus, we can compile payo¤s of

agent i in market r as a function �r : S ! R. This function assumes that
equilibrium inside each market is symmetric but equilibrium payo¤s in di¤erent

markets may be di¤erent because demand, prizes, rules of contests, costs, etc

may be di¤erent. To de�ne this function, we must decide what are the payo¤s

in a market in which there are no agents. We think that a natural choice in the

CEP is the limit of payo¤s (assumed to exist) when the number of agents tends

to zero, whereas, in the DEP a natural choice would be zero.

We provide separate de�nitions of an entry equilibrium for DEP and for

CEP, even though the idea behind both de�nitions is the same.

De�nition 1 An Equilibrium for the CEP is a list of real numbers n� =

(n�1; n
�
2; :::n

�
K) such that for all markets r; s = 1; 2; :::K

If n�r ; n
�
s > 0; �r(n

�) = �s(n
�):

If �r(n
�) > �s(n

�); n�s = 0:

In words, when the number of agents in a market is a continuous variable,

equilibrium requires that for each active market (i.e. a market with a positive

number of agents) payo¤s are identical. And if a market yields less payo¤s than

another, this market must be inactive.

De�nition 2 An Equilibrium for the DEP is a list of natural numbers n� =

(n�1; n
�
2; :::n

�
K) such that for all markets r; s = 1; 2; :::K, for which n

�
r � 1,

�r(n
�
1; n

�
2; ::; n

�
r ; ::; n

�
s; ::; n

�
K) � �s(n�1; n�2; ::; n�r�1; ::; n�s+1; ::; n�K) all r; s = 1; 2; ::;K:

(1)

In words, agents in market r have no incentive to switch to market s.

4See the appendix for a formal model of the second stage.
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Our de�nitions assume that markets can accommodate any number of agents.

But in some cases there are limits to the number of agents. We already men-

tioned the examples of soccer and NBA. Also there may be a maximum number

of �rms in a particular location, like airlines or pharmacies. In such a case, as-

sume that there is, at least, one market without such a limit. Let the minimum

payo¤ obtainable in markets without limits be �. If in market k there is a limit

to the �rms there, choose �k <� whenever nk is larger than this limit, so no

agent will ever consider to enter into this market and the previous de�nitions

still valid.

Finally, our de�nition of a DEP equilibrium can be cast in terms of game the-

ory. Players are agents 1; 2; :::; N . The strategy sets are common and denoted

by K = f1; 2; :::;Kg: Each agent chooses a location 1; 2; :::;K that becomes a

strategy. When agent i chooses location j her strategy is denoted by sij . When

agents 1; 2; ::; N choose locations (r; ::; j; ::; t) the corresponding pro�le of strate-

gies is denoted by s = (s1r; ::; s
i
j ; ::; s

N
t ). Given a pro�le of strategies ~s, the

number of �rms in location j, nj , is the number of strategies with a j subindex

which we write as nj = nj (~s). Given a pro�le of strategies ~s in which the

strategy chosen by i is ~sij , payo¤s for i, denoted by �
i, are given by

�i = �j (n1 (~s) ;n2 (~s) ; :::;nK (~s))

where �j() are the payo¤s corresponding to location j. Best replies and Nash

equilibrium are de�ned in the usual way. The latter corresponds to the De�ni-

tion 2 above. Note that we consider pure strategies only. Given that there is a

�nite number of pure strategies, a mixed strategy equilibrium always exist.

4 The Continuous Entry problem

In this case, we have the following result:

Proposition 3 If payo¤ functions are continuos in SC there is an equilibrium

for the CEP.
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Proof. This result is proved by using a �xed point theorem.

Let Pi be the compact set in which every payo¤ in market i lies. This set exists

since payo¤s are continuous and the set of agents is compact.

Let P = �Ki=1Pi. Let � = (�1; :::;�K) 2 P . Given a vector of payo¤s, let

�M (�) be the maximum payo¤ in all markets. There might be several markets

at which this pro�t is maximum. These markets are those at which agents in

market r will migrate if �M (�) > �r. Now is time to de�ne our mappings.

On the one hand, we have payo¤ functions � : SC ! P:

On the other hand, consider the following maximization problem: Given a vector

of payo¤s, say ��, choose n to Maximize
PK

h=1 nh(
��h��M (��)) over SC . This

is the maximization of a linear function on a compact set and it has a solution

for given ~�. By the maximum theorem (Berge, 1959) this maximization de�nes

an upper hemicontinuous and convex valued mapping � : P � SC .

Now � � � is an upper hemicontinuous and convex valued mapping from a

convex, compact set into itself and by Kakutani�s theorem it has a �xed point

denoted by (~n1; ~n2; :::; ~nK ; ~�1; ~�2; :::; ~�K). At this �xed point, clearly for all s,

~ns(~�s��M (~�)) � 0. Thus, all terms in
PK

h=1 ~nh(
~�h��M (~�)) have the same

sign (with zero counting both as both positive and negative). Also, for those

in which ~nr and ~ns are positive ~�r = ~�s = �
M (~�). Lastly, it should be noted

that it is impossible that all terms in this sum are strictly negative, because, at

least, a market has the maximum pro�ts.

5 A digression: Existence of a Walrasian equi-

librium without Walras�law

The construction of equilibrium in the CEP can be used to prove the existence

of a Walrasian equilibrium without Walras law.5 Now ni is the price of good i

and �i(n) is the excess demand of good i. Proposition 3 makes sure that there

5Actually our argument show the existence of a diagonal image. See Herrero and Villar

(1991) for further applications of this result.
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are prices, ~n, for which ~ni�i(~n) = 0 for all i.

Maskin and Roberts (2008) assume that when ni = 0, �i > 0 and the

following weak Walras law;

Either �(n) = 0 or there exist i and j such that �i(n) > 0 and �j(n) � 0.

In the �xed point, ~n, we have three possibilities:

i) Either all excess demands are positive, which is forbidden by the Maskin and

Roberts�weak Walras law.

ii) Some excess demand are positive and some negative in which case those neg-

ative obtain a zero price which, by assumption, implies positive excess demand.

iii) All excess demand are zero or negative.

The latter is a market equilibrium.6 An identical proof can be made if we

substitute the Maskin-Roberts condition by the assumption that the sum of the

value of excess demands is less than or equal to zero, as in Aliprantis and Brown

(1983), Yannelis (1985), Podczeck (1997) and Krasa and Yannelis (1994).

Given the close connection between Walrasian equilibrium and CEP we can

translate the comparative static results obtained in the former to the latter.

6 The Discrete Entry problem

We now tackle the case in which the number of agents in any market is a non

negative integer. Let us start with the simple case of K = 2.

Proposition 4 The DEP for K = 2 always has an equilibrium

Proof. We will present an algorithm that visits all possible non negative integers

between 0 and N . Assuming that none of these integers is an equilibrium we

arrive to a contradiction. Start with n1 = N and suppose that is not equilibrium.

This must be because a �rm has incentives to switch from market 1 to market
6Maskin and Roberts assume that demand is a possibly multivalued upper hemi continuous

correspondence with convex and compact values. It is easy to see that this generalization can

be easily done in our framework.
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2 so now we are at (N � 1; 1). But for n1 = N � 1 to be not an equilibrium it

must be that a �rm �nds pro�table to switch from market 1 to market 2 so we

are at (N � 2; 2), so on and so forth. Finally, if n1 = 1 is not an equilibrium it

must be that the remaining �rm in market 1 has incentives to switch to market

2. But then, (0; N) is an equilibrium.7

We note that when K = 2, existence of equilibrium does not depend on how

payo¤ functions look like and the number of �rms. Unfortunately, the previous

result is not generally true with three interrelated markets as Example 5 shows.8

Example 5 Suppose K = 3 and N = 2. We represent this DEP in the follow-

ing table:

Market 1 Market 2 Market 3

Market 1 3; 3 4; 2 4; 4

Market 2 2; 4 0; 0 6; 2

Market 3 4; 4 2; 6 1; 1

Consider the choices that yield payo¤s of (3; 3). Player 1 can switch to market

3 and win. But then player 2 can switch to market 2 and win. Now player 1

switches to market 1 and wins. But player 2 switches to market 3 and wins. We

have a cycle so no pair of choices belonging to this cycle can be an equilibrium.

It is easy to see that the remaining cells cannot be an equilibrium. Those yielding

zero or one payo¤s are not a best reply for both players, and the other two cells

are identical -with payo¤s interchanged- to two in the cycle.

In Example 5, payo¤s in each market are decreasing in the number of agents

in this market. So lack of existence does not rely on lack of monotonicity of

payo¤s on the number of individuals in this market. It does on payo¤s in each

7The proof of this result is reminiscent of the proof of Proposition 1 in Barberá and Beviá

(2002).
8There are several instances in which the jump from two to three dimensions produces com-

pletely new results. For implementation see the survey by Corchón (2009) and for matching

see Lam and Plaxton (2022).
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market depending on the whole allocation of �rms. Next we show that when

payo¤s in each market only depend on the number of agents in this market,

equilibrium is restored.

First we need to explain a key concept in our proof of existence of equilib-

rium, namely the following algorithm that we call "The Reaper".9

Reaper algorithm. Consider the list of all payo¤s yielded by an allocation

of agents, �1(1); :::;�1(N);�2(1); :::;�2(N); ::::;�K(1); :::;�K(N). At any step

our algorithm "�lls" the market which has the largest payo¤ achieved with

the agents that have not been allocated so far. By simplicity we describe the

algorithm assuming that there are no ties among payo¤s. In case of ties they

are broken arbitrarily.

� Start with the largest payo¤, say �j(n̂j).

Allocate n̂j agents there (by de�nition of payo¤s n̂j � N).

� Consider next largest payo¤ say �k(�nk).

If �nk > N � n̂j disregard this payo¤ because there are not enough remain-

ing �rms to allocate them into market k.

If k = j and �nj < n̂j disregard this payo¤ because a larger number of

�rms are already allocated to this market.

If k = j and �nj > n̂j allocate �nj �rms to this market.

In any other case allocate �nk to the k market.

� Continue allocating �rms to markets with the rules speci�ed for the second

largest payo¤, namely: Disregard payo¤s for markets in which either there

are no remaining �rms to �ll this market or a larger number of �rms have

been already allocated. If the number of �rms in this market exceed the

number already allocated in a previous step, delete the allocation in the

market with less �rms.
9Our algorithm loosely reminds the "Greedy Algorithm" with a di¤erence. Our procedure

reconsiders choices made before, see Black (2005).
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At each stage, the Reaper Algorithm visits all markets in order of prof-

itability and allocates new �rms in markets in which a) in a previous stage we

allocated less �rms and b) there are enough remaining �rms to be allocated

there. Clearly this algorithm, eventually, places all �rms in some market. Let

us denote such an allocation by n̂.

Proposition 6 When payo¤s in each market depend only on the number of

�rms in this market, the Reaper Algorithm de�nes an allocation of �rms, n̂,

that is an equilibrium.

Proof. Suppose a �rm is considering switching, say from market j to market

k. Now in market k there are n̂k+1. But if payo¤s there are larger that in market

j with n̂j there should be k + 1 �rms allocated to this market. Contradiction.

Finally we show that the equilibrium allocation selected by the Reaper al-

gorithm may be dominated in terms of payo¤s by another allocation that it is

not an equilibrium.

Example 7 K = 3 ; N = 5 and �1(1) > �2(2) > �3(3) > �1(2) > �2(3) >

�3(4) > �2(1) > �2(4) > �1(3) > �3(2) > �1(4) > �3(1).

Applying the Reaper algorithm:

1st step: we begin with �1(1); and allocate one agent to market 1.

2nd step: We follow with �2(2); as it is a di¤erent market and there are enough

remaining agents, we allocate two agents to market 2.

3rd step: Next payo¤ is �3(3); as there are no remaining �rms to �ll this market

we disregard this payo¤.

4th step: Next payo¤ is �1(2): The current number of �rms in market 1 exceed

the number already allocated in the 1st step, so we consider this last payo¤.

Now there are 2 agents in market 1 and two agent in market 2, and one agent

to allocate.

5th step: Next payo¤ is �2(3); and similar to the former case, we delete the

allocation of market 2 of the 2nd step, an allocate 3 agents to market 2.

Hence, all �rms has been allocated and the equilibrium is n1 = 2; n2 = 3, n3 = 0:
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But the allocation n1 = 0; n2 = 2; n3 = 3 Pareto-dominates our equilibrium.

Note that the last allocation is not an equilibrium because an agent can enter

market 1 and increase its payo¤s.

7 Conclusions

In this paper, we have shown the existence of an entry equilibrium with and

without considering the integer problem. In the second case we assume conti-

nuity of the function mapping the number of �rms to payo¤s. In the �rst case

we assume that either two markets or that payo¤s in each market only depend

on the number of �rms in this market. When these assumptions are not ful-

�lled, equilibrium does not necessarily exist; and when it does exist, it is not

necessarily e¢ cient in terms of payo¤s. The model is su¢ ciently powerful to

encompass situations like oligopoly, contests, Walrasian equilibrium, group and

nation formation, etc.10

Our results point out that the venerable partial equilibrium model of entry,

where �rms face a binary decision -entry or not entry- might be misleading.

Additionally, our �ndings suggest a di¤erence between Contests -where the as-

sumption that payo¤s in each contests are independent of the number of people

in other contests seems reasonable- and oligopoly in which payo¤s in a market

depend on the number of competitors in nearby markets. In the latter, equi-

librium (in pure strategies) is not guaranteed. These �ndings point out that

empirical papers and regulators should not treat identically the entry of small

businesses equally, in which forgetting the integer problem may be a reasonable

approximation (think the entry of a restaurant in a large city), and entry of

large �rms where the integer problem must be dealt with.11

There are several possible extensions of our work.

1. To �nd conditions on payo¤s that allow the existence of equilibrium in

10Another possible application of our Proposition 3 is to show the existence of an allocation

that equalizes utilities, see Herrero-Villar (1987).
11A survey of empirical �ndings on entry is by Djankov (2009).
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the DEP. This might be achieved using tools like the Tarski �xed point

theorem, see Milgrom and Roberts (1990) and Vives (1990). This theorem

requires increasing best replies (you can check that in our example of

inexistence of an equilibrium, best replies are U-shaped). We are not

aware of conditions under which this assumption holds in our framework.

2. To consider the possibility that agents enter some markets with sev-

eral �rms like in the literature on strategic divisionalization, see Corchón

(1991) and Polaski (1992).

3. To introduce a planner in each market that o¤ers, before the game is

played, certain �scal facilities to the �rms landing in this market like in

the EU or a federal state. Firms choose markets that maximizes the total

payments. For instance, the sum of payo¤s obtained in the market plus

the subsidies o¤ered by the planner. If this planner has strictly increasing

preferences in the number of �rms in the market she controls, the result

may be some kind of Bertrand competition and one location having all

�rms.

4. To examine the welfare properties of equilibrium and to see what would

be the options of a planner interested in the aggregate welfare obtained

in all markets. In particular, our paper calls for an investigation into how

a European regulator might control the location of large �rms inside the

EU.

5. To bridge the CEP and DEP. In particular, to characterize the class of

games for which equilibrium exists in the continuum, but not in the integer

case.

We leave all these extensions to future work.
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8 APPENDIX

Here we discuss in a simple set up the assumption that payo¤s are either

monotonically increasing or decreasing with the number of agents in a market.

This will serve to illustrate what is behind this assumption.

To lay the cards on the table we model the subgame that yields payo¤s,

which could be an oligopoly, a contest, or a group formation game. Plugging

equilibrium actions in this subgame into payo¤s, we obtain the payo¤ functions

considered in the main text, namely �1(n1);�2(n2); :::;�K(nK). Since, we focus

in a single market we drop the market subindex. Payo¤s can be written as

U i = U(gi; g�i) where gi is the action taken by agent i which is a real number

and g�i =
P

j 6=i g
j is the sum of everybody else�s actions. Note that here

superindexes refer to players and there is no subindex (used in the main text to

denote markets) since we analyze a single market. Our game is aggregative, i.e.

payo¤s depend on the own action and the sum of actions of everybody else in the

game. For instance Cournot oligopoly, Tullock contest model and contribution

games are aggregative games.12 Under standard conditions, a symmetric Nash

equilibrium exists and it is characterized by a list of �rst order conditions (FOC)

@U(gi; g�i)

@gi
= 0, i = 1; 2; :::n: (2)

In a symmetric Nash equilibrium, actions depend on the number of agents in

the market, n, therefore, we write gi(n) and g�i(n).

U i = U(gi(n); g�i(n)) = (3)

U(gi(n); (n� 1)gi(n)): (4)

Utility in (4) can be written as U(n).This corresponds to the �i(ni)�s in the

main text. We consider CEP and DEP separately.

12A survey on aggregative games describing these and other applications is Corchón (2021).
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8.1 Payo¤s and the number of players in CEP

We assume that all functions considered here are di¤erentiable as many times

as needed. By di¤erentiating (4) with respect to n we obtain:13

dU i

dn
=
@U(gi(n); g�i(n))

@gi
dgi

dn
+
@U(gi(n); g�i(n))

@g�i

�
gi(n) + (n� 1)dg

i

dn

�
: (5)

In an interior equilibrium the �rst term of (5) is zero (see (2)), so we have

dU i

dn
=
@U(gi(n); g�i(n))

@g�i

�
gi(n) + (n� 1)dg

i

dn

�
: (6)

Equation (6) shows that how payo¤s depend on the number of agents. The �rst

term (@U(gi(n); g�i(n))=@g�i) depends on how payo¤s are a¤ected by other

agents�strategies. In contests and Cournot oligopoly this term is negative. In

network games, Bertrand oligopoly and contribution games this term is positive.

In other applications, this term may change sign depending on the congestion

e¤ects. For instance the addition of more players to a small team usually in-

creases payo¤s but as the team becomes congested this e¤ect reverses. The

second term depends on gi(n) (positive) and how individual strategies depend

on the number of players (dgi=dn). We now focus on �nding the last term.

By di¤erentiating �rst-order conditions of payo¤maximization (2) we obtain

@2U(gi(n); g�i(n))

@(gi)2
dgi

dn
+
@2U(gi(n); g�i(n))

@gig�i

�
gi(n) + (n� 1)dg

i

dn

�
= 0

which yields

dgi

dn
= �

@2U(gi(n);g�i(n))
@gig�i gi(n)

@2U(gi(n);g�i(n))
@(gi)2 + (n� 1)@2U(gi(n);g�i(n))@gig�i

: (7)

Now plugging (7) into (6) we obtain

dU i

dn
=

@U(gi(n); g�i(n))

@g�i

0@gi(n)� (n� 1) @2U(gi(n);g�i(n))
@gig�i gi(n)

@2U(gi(n);g�i(n))
@(gi)2 + (n� 1)@2U(gi(n);g�i(n))@gig�i

1A ;
dU i

dn
=

@U(gi(n); g�i(n))

@g�i
gi(n)

@2U(gi(n);g�i(n))
@(gi)2

@2U(gi(n);g�i(n))
@(gi)2 + (n� 1)@2U(gi(n);g�i(n))@gig�i

: (8)

13Seade (1980) p. 482 o¤ers a justi�cation of di¤erentiating with respect to n in models in

which n is an integer This procedure has been amply followed by the literature on entry.
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In equilibrium gi(n) > 0 and second order conditions of payo¤ maximization

(assumed to hold strictly) says that @2U(gi(n); g�i(n))=@2gi < 0. Thus, how

payo¤s depend on n is determined by two items:

1. @U(gi(n); g�i(n))=@g�i which re�ects how payo¤s depend on other players

strategies (already discussed) and

2. @2U(gi(n); g�i(n))=@(gi)2 + (n � 1)@2U(gi(n); g�i(n))=@gig�i which re-

�ects the impact of actions on marginal payo¤s (recall that n > 1, if

n = 1 the second term of this item disappears).

Item 2 is composed of two terms. The �rst term (@2U(gi(n); g�i(n))=@(gi)2)

re�ects the e¤ect of the actions of i on marginal payo¤s of i which, as we men-

tioned earlier, is negative. The second term ((n� 1)@2U(gi(n); g�i(n))=@gig�i)

re�ects the actions of everybody else on marginal payo¤s of i. If this is positive,

strategies are strategic complements and if this is negative, strategies are strate-

gic substitutes. Thus, under strategic substitution and @U(gi(n); g�i(n))=@g�i <

0 payo¤s decrease with the number of agents (see Corchón (1994) Proposition

2 for a proof taking care of the integer problem). However, strategic substitu-

tion is not guaranteed even in Cournot (for instance, see Corchón and Torre-

grosa (2020), Figure 2) or Contests (for instance, see Pérez-Castrillo and Verdier

(1992), end of p. 338). If strategic substitution is not postulated, we may as-

sume that the �rst term (@2U(gi(n); g�i(n))=@(gi)2) dominates. This is what

we call the dominance assumption. In this case we have the usual result:

Proposition 8 Under the dominance assumption, we have that

sign
dU i

dn
= sign

@U(gi(n); g�i(n))

@g�i
:

The dominance of @2U(gi(n); g�i(n))=@(gi)2 resembles the Dominant Diag-

onal condition used in general equilibrium. In the case of Cournot is related to

best reply dynamics (Seade (1980) p. 486) in which dgi=dt = R(g�i)� gi with

R() the best reply function. This dynamic has been criticized since assumes that

agents always expect no reaction from others but this assumption is invariably
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wrong. Moreover, there are many other proposals to model dynamics in games:

gradient, better response, �ctitious play, evolutionary process (including imi-

tation, sampling, etc.), no regret, etc. Given all these options, the dominance

assumption remains just an expedient to obtain the required result.

8.2 Payo¤s and the number of players in DEP

We start this subsection with a preliminary result that will be useful later on.

We ask what kind of restrictions on the shape of best replies we may possibly

have. The answer in short is none.14

Proposition 9 Let B be a function mapping two compact intervals of R.

a) There is a game with identical players such that B is the best reply of any of

such players.

b) If B is continuous or increasing, there is a symmetric equilibrium of such a

game.

c) If B has continuous derivatives, payo¤s can be chosen to be increasing or

decreasing in g�i, as we wish

Proof. Part a) consider the following payo¤ function

U(gi; g�i) = � (g
i)2

2
+ giB(g�i)�K(g�i) (9)

where K() is an arbitrary function. Maximization of (9) yields

�gi +B(g�i) = 0: (10)

Second order condition holds so (10) picks the maximum value of gi.

Part b) is proved using �xed point theorems, Brower for continuous B0is and

Tarski for increasing B0is.

Part c) is proved chosen @K=@g�i larger than sup @B=@g�i.

14Proposition 9 below generalizes Proposition 0 in Corchón (1994). There in order to convert

an arbitrary function in a best reply it is assumed that this function is decreasing.
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From this result we immediately see that, in abstract aggregative games,

there may be several symmetric equilibria.15 In Figure 1 we have pictured

(in solid) the function sin(g�i) + 1. For n = 4 the unique equilibrium occurs

in the intersection of B() with gi=3 which is the highest dashed line in the

�gure. For n = 6 there are three equilibria which are the intersection of the

intermediate dashed line with B(). For n = 10 there are �ve equilibria that are

the intersection of the lowest dashed line with B(). As long as more agents are

introduced, the number of equilibria increases.

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4

g^{­i}

gi

Figure 1

Given the possible multiplicity of equilibria, the e¤ect of entry on equilibrium

variables depends on which equilibrium we choose before and after the change.

Some of these equilibria are locally stable according to best reply dynamics.

For instance, when n = 6 we see that the two equilibria in the extremes are

stable according to best reply dynamics. But as we have argued, stability under

best reply dynamics is not a desirable property per se. Instead, given that

15 It is easily shown that this payo¤ function cannot represent a Cournot model (as it does

the construction in Proposition 0 in Corchón (1994)) or a standard contest model. The latter

posses some structural properties at least in the case of n = 2, see Corchón and Serena (2022).
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without uniqueness the problem is hopeless, we will focus on games with a

unique symmetric equilibrium ful�lling the following boundary property.16

Assumption. B(~g�i) > ~g�i for all ~g�i su¢ ciently close to inf ~g�i.

This assumption, referred to as BY in the sequel, is ful�lled in the case of

Cournot oligopoly -when the competitors are producing a negligible quantity,

the best reply is close to monopoly output- and Tullock contests. It avoids that

0 can be an equilibrium (see Example 12 below). This assumption is used in

our two �nal results, dealing respectively with the case of U() increasing and

decreasing in g�i.

Proposition 10 When the symmetric equilibrium with n players is unique, BY

holds, B() is continuous and U() is decreasing in g�i, an increase in the number

of players decreases payo¤s in the symmetric equilibrium.

Proof. Step 1. We start by showing that if U(gi; g�i) is decreasing in g�i, and

U(n+1) � U(n); then g�i(n) > g�i(n+1). Suppose not, so g�i(n) � g�i(n+1).

Because U() is decreasing in g�i

U(gi(n+ 1); g�i(n)) > U(gi(n+ 1); g�i(n+ 1))

and by assumption

U(gi(n+ 1); g�i(n+ 1)) � U(gi(n); g�i(n)):

Thus,

U(gi(n+ 1); g�i(n)) > U(gi(n); g�i(n)):

contradicting that gi(n) is the best reply to g�i(n) so g�i(n) > g�i(n+ 1).

16Under the following conditions there are no asymmetric equilibria: a) B() is increasing. b)

B() is decreasing and
��@2U=@g2i �� > @2U=@gig�i:Proof. a) Suppose that in some equilibrium

there are two players, i and j such that g�i > g�j . Then
P
k 6=j g

�
k >

P
r 6=i g

�
r . So then

g�j = B(
P
k 6=j g

�
k) > B(

P
r 6=i g

�
r ) = g�i , contradiction. b) The proof follows from the best

reply, derived from di¤erentiating (2), being a contraction. So, equilibrium is unique and

given that a symmetric equilibrium exists, there are no asymmetric equilibria.
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Step 2. Note that our assumption on ~g�i implies that B(~g�i) is above any

straight line in which a symmetric equilibrium must lie, see Figure 2.

Step 3. To end the proof assume U(n+1) > U(n). Consider the function g�i =

(n�1)B(g�i) de�ned in [0; g�i(n+1)]. This function is continuous on a compact

interval so it has a �xed point. This �xed point is a symmetric equilibrium with

n agents which is di¤erent from g�i(n) because g�i(n+1) < g�i(n) so we arrive

to a contradiction.

Proposition 11 When the symmetric equilibrium is unique, BY holds, B() is

continuous and U() is increasing in g�i, an increase in the number of players

increases payo¤s in the symmetric equilibrium.

Proof. The proof is virtually identical to Proposition 10 so we will only in-

dicate the guidelines. We start by showing that if U(gi; g�i) is increasing in

g�i, and U(n + 1) � U(n), then g�i(n) > g�i(n + 1). And since the point
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(gi(n+1); g�i(n+1)) is below the line g1(n� 1) = g�i, the best reply cuts the

line corresponding to the symmetric equilibrium with n players contradicting

uniqueness of equilibrium

We remark that Propositions 10 and 11 say nothing about how payo¤s be-

have in asymmetric equilibria. Unfortunately both Propositions are not true

when our BY assumption is not ful�lled.

Example 12 Let U = �(gi)2=2+ gi(g�i)2+A(g�i)2. Strategy sets are [0; 1=3]

and n > 2: When A � 0; U is increasing on g�i.FOC of payo¤ maximization

is �gi + (g�i)2 = 0. Second order condition holds so the best reply is gi =

minf(g�i)2; 1=3g. In the unique interior symmetric equilibrium gi = 1=(n� 1)2

so

U(n) =
1

(n� 1)2

 
1

2 (n� 1)2
+A

!
:

When A = 0 we have a counterexample to Proposition 11, since U is increasing

in gi and decreasing with respect to n: When A < � (n� 1)�2 :We have a coun-

terexample to Proposition 10, since U is decreasing in gi and increasing with

respect to n:

Summing up, in the DEP, the assumptions that symmetric equilibrium is

unique and utility is monotonic in g�i are not powerful enough to obtain the

same monotonicity of utility with respect to the number of agents. The bound-

ary condition is also needed.
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