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Quantum coherence in momentum space of light-matter condensates
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We show that the use of momentum-space optical interferometry, which avoids any spatial overlap between
two parts of a macroscopic quantum state, presents a unique way to study coherence phenomena in polariton
condensates. In this way, we address the longstanding question in quantum mechanics: “Do two components of
a condensate, which have never seen each other, possess a definitive phase?” [P. W. Anderson, Basic Notions of
Condensed Matter Physics (Benjamin Cummings, Menlo Park, CA, 1984)]. A positive answer to this question
is experimentally obtained here for light-matter condensates, created under precise symmetry conditions, in
semiconductor microcavities, taking advantage of the direct relation between the angle of emission and the
in-plane momentum of polaritons.
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I. INTRODUCTION

Cold atoms and exciton polaritons in semiconductor mi-
crocavities are systems where their capability to constitute
Bose-Einstein condensates (BECs) has been demonstrated
in recent years [1,2]. These BECs, due to their dual wave-
particle nature, share many properties with classical waves
as, for instance, interference phenomena [3–6], which are
crucial to gain insight into their undulatory character [7,8].
One of the main differences between atomic and polariton
condensates resides in the particle lifetimes: The finite lifetime
of polaritons, in contrast with the infinite one of atoms, can be
regarded as a complication. But making virtue of necessity, a
short lifetime also implies a significant advantage: Polaritons
have a mixed exciton-photon character [9], their lifetime
being determined by the escape of their photonic component
out of the cavity. These photons are easily measured either
in real space (near-field spectroscopy) or momentum space
(far-field spectroscopy) [10], rendering full information about
the polariton BEC’s wave function and, in particular, about its
coherence [2]. Our goal is to profit from these measurements
in momentum space to experimentally investigate something
far from accessible in atomic condensates: the interference
in momentum space produced by the correlation between two
components of a condensate, which are, and have always been,
spatially separated. Understanding coherence is important for
a large number of disciplines spanning from classical optics
to quantum information science and optical signal processing
[11,12].

Pitaevskii and Stringari made a theoretical proposal to
investigate experimentally these interference effects in mo-
mentum space via the measurement of their dynamic struc-
ture factor [13]. In related experiments, coherence between
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two spatially separated atomic BECs has been indirectly
obtained using stimulated light scattering [14,15]. In this
Rapid Communication we perform a direct measurement
of this correlation in polariton BECs, which, moving in a
symmetrical potential landscape, acquire a common relative
phase, obtaining a positive answer to Anderson’s question
[16–19], which opens additional perspectives in the field of
multicomponent condensates.

II. EXPERIMENTAL RESULTS AND DISCUSSION

We confront this task in a quasi-one-dimensional (1D)
system made of a high-quality AlGaAs-based microcavity,
where 20 × 300 μm2 ridges have been sculpted. The sample,
kept at 10 K, is excited with 2-ps-long light pulses from a
Ti:Al2O3 laser. In order to create polaritons in two separated
spatial regions, the laser beam is split in two, named A and
B, impinging simultaneously at positions distanced by dAB =
70 μm. Additional experimental details are described in the
Supplemental Material [20]. A crucial issue when optically
creating polaritons is the excess energy of the excitation
laser. There are two well-explored alternatives: nonresonant
excitation at very high energies [2] and strictly resonant excita-
tion [21]. The latter situation generally produces macroscopic
polariton states with a phase inherited from that of the laser,
unless special care is taken in the experiments [22]. The former
case is appropriate to avoid phase heritage, but it does not
provide the momentum distribution, shown below, required for
our experiments. In order to avoid these difficulties, we opt for
a different alternative, depicted in Fig. 1(a): The laser beams
excite the sample at the energy of bare excitons and kx ∼ 0.
The broad bands between 1.542 and 1.548 eV correspond to
excitonic emission bands; the subbands below 1.542 eV are
the confined lower polariton branches. After energy relaxation,
polariton condensates are created in a process that involves
a nonreversible dressing of the excitons and therefore an
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FIG. 1. (Color online) (a) Sketch of the excitation and relaxation
processes to form propagating polariton wave packets (WPs) on
a background showing the energy vs kx emission obtained under
nonresonant, low power excitation conditions. The gray ellipse
depicts the excitation laser at 1.545 eV and kx ∼ 0. The dashed
lines indicate the energy relaxation of excitons into polariton WPs.
Polariton WPs, propagating with kx ≈ ±1.6 μm−1 (slightly displaced
for the sake of clarity), are depicted with circles, coded in colors
explained in (b). The emission intensity is coded in a logarithmic, false
color scale. (b) Sketch in real space of the experimental configuration.
A laser beam is split into two arms, A and B, distanced by d . They
create four propagating polariton WPs, coded in different colors, nA

1,2

(magenta, blue) and nB
1,2 (red, green), moving along the x axis of a

microcavity ridge in the direction depicted by the arrows.

erasure of the laser phase [20]. Above a given pump intensity
threshold, polaritons with kx ∼ 0 evolve towards two states
with momenta ±kx [Fig. 1(a)]. As sketched in Fig. 1(b),
this procedure results in the formation of four propagating
polariton wave packets (WPs). We label the macroscopic state
of the WPs as ψA

1 , ψA
2 , ψB

1 , ψB
2 , where the superscript refers

to the excitation beam, the subscript 1(2) is for WPs initially
moving to the left (right), i.e., with kx < 0 (kx > 0). The
direction of propagation is determined by the presence of
local effective-barrier potentials (VA and VB), associated to
a blueshifted dispersion relation, coming from carrier-carrier
repulsive interactions [23]. The densities of the polariton WPs
are given by n

A,B
j = |ψA,B

j |2, j = 1,2.
WPs created by A have never been together with those

generated by B, as sketched in Fig. 1(b). However, WPs with
the same subscript j are in the same quantum state [24]. Using
the capability of measuring directly in momentum space, a
unique condition only achievable in light-matter condensates,
we can assess whether or not WPs ψA

1 and ψB
1 (or ψA

2 and
ψB

2 ) are correlated to each other, being components of the
same condensate. The two WPs propagating to the left are
described by a common macroscopic order parameter

�coh
1 (x) = ψA

1 (x) + eiφψB
1 (x), (1)

while those propagating to the right are described by

�coh
2 (x) = eiφψA

2 (x) + ψB
2 (x). (2)

The phases are chosen to have inversion symmetry with respect
to x = 0, because in our experiments we tune the intensities of
the two lasers in order to get a symmetrical potential V (x) =
V (−x). In that respect, our condensates are related to each
other through the symmetry of the excitation process.

Furthermore, our potential landscape renders an equal mo-
tion for ψA

j and ψB
j , i.e., equal momenta |(kx)Aj | = |(kx)Bj | =

kx . These are precisely the suitable conditions to observe
coherence between two components spatially separated by
d, i.e., ψA

j (x − d/2) = ψB
j (x + d/2) = ψ0(x), of a given

condensate �coh
j . This coherence can be observed in k space,

as we discuss now.
For the sake of clarity, we focus in the following discussion

only on the left-propagating WPs. The corresponding order
parameter in k space can be written as

�coh
1 (kx) = ψA

1 (kx) + eiφψB
1 (kx)

= e−ikxd/2ψ0(kx) + ei(φ+kxd/2)ψ0(kx), (3)

with ψ0(kx) being the Fourier transform of ψ0(x) [13]. This
yields a momentum distribution

ncoh
1 (kx) = ∣

∣�coh
1 (kx)

∣
∣
2 = 2[1 + cos(kxd + φ)]|ψ0(kx)|2.

(4)

The coherence between the two components produces inter-
ference fringes with a period

�kx = 2π/d. (5)

Our aim is to observe the existence of interferences in k space
coming from this macroscopic two-component condensate.
Far-field detection allows the direct measurement of momen-
tum distributions, i.e., it gives a direct determination of the
existence, and the period, of these interference fringes. It must
be also taken into account that the measured total polariton
density is formed by a condensed population ncoh coexisting
with a thermal one [25], therefore the interference pattern
visibility ν is lower than 1 (see Supplemental Material [20]).

Our most important result is shown in Fig. 2(b): We indeed
observe the interference fringes in k space, described by
Eq. (4), directly in the polariton emission. This certifies the cor-
rectness of our hypothesis that each couple of WPs (ψA

j , ψB
j )

constitutes a two-component condensate. Figure 2(a) shows
the actual evolution in time of the four WPs schematically
depicted in Fig. 1(a): Our results clearly demonstrate that the
distance d between the two components of each condensate
remains constant with time during the first ∼70 ps (d = dAB),
as evidenced by the dashed parallel arrows. Figure 2(a) also
contains interesting real-space interferences when WPs ψA

2
and ψB

1 overlap in real space at 66 ps that we shall discuss
in more detail below. A peculiarity of our experiments is that
we observe the dynamics of the coherence; this allows us to
determine that the two components of the condensate are phase
locked since there is not any drift in the interference patterns.

As readily seen in Fig. 2(b), an initial acceleration of the
four WPs, from rest, kx = 0, to kx = ±1.6 μm−1 during the
first 40 ps, is followed by a uniform motion taking place from
40 to 70 ps. The interference pattern of each condensate
is observed until ∼75 ps, the instant at which ψA

1 and ψB
2

disappear from the sample region imaged in the experiments.
Then WPs ψB

1 and ψA
2 are progressively slowed by the

presence of the barriers at the excitation spots (VA/VB halts
ψB

1 /ψA
2 ). When these two WPs, which are the components

of two different condensates �coh
1 and �coh

2 , are stopped (at
∼100 ps) another interference appears in k space, but now
at kx = 0 as it corresponds to WPs at rest. This means that
these two condensates also interfere with each other, being
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FIG. 2. (Color online) (a) Emission in real space, along the x axis of the ridge, vs time. Gray circles at x = ±35 μm indicate the spatial
location of the A and B laser beams; the trajectories of the four WPs, nA

1 , nA
2 , nB

1 , and nB
2 , are indicated by the dashed arrows. (b) Momentum-space

emission, along kx , vs time. The gray circle indicates that the laser beams A and B excite the ridge at kx ∼ 0. The dashed, black arrows indicate
the acceleration of the condensates ncoh

1 and ncoh
2 , as well as the deceleration of the WPs nB

1 and nA
2 . Intensity is coded in a normalized,

logarithmic false color scale.

remarkable that �coh
1 and �coh

2 still preserve some kind of
mutual coherence, supporting the functional form of Eqs. (1)
and (2). For longer times, the two WPs move again, as can
be observed in Figs. 2(a) and 2(b), becoming more difficult to
track their trajectories.

Note that our measurements are performed averaging
over millions of shots of the pulsed laser, therefore, if φ

were a phase determined by the projection involved in the
measurement process [17,18], it would take a random value in
each realization. Then, averaging over all the possible results,
the interference pattern would not be observed. However, as a
consequence of the symmetry V (x) = V (−x) of the potential,
the whole state of the four WPs, �, is symmetric, both in
real and momentum space. The continuity in k space of the
wave function [�(kx)] and of its derivative [∂�(kx)/∂kx] sets
the relative phase φ and makes the experimental realizations
contribute constructively to the observed interference patterns.
In other words, the spatial symmetry involved in the buildup of
the condensates determines the relative phase φ. In this sense,
they are not independent from each other although they have
never before coincided in real space.

Further insight into the quantum coherence is obtained by
analyzing in detail the interferences occurring in momentum
and real space. Accordingly, we present in Fig. 3 two-
dimensional maps of the polariton emission at three consec-
utive, relevant times [26]. We focus on the correspondence
between the period of the interference patterns in each space
(real and momentum) and the separation between the WPs in
the complementary space. Figure 3(a) shows the momentum
distribution n(kx,ky), 35 ps after the impinging of the laser
beams on the sample. The coherence of each �coh

j is observed
by the conspicuous interference patterns ncoh

j centered at
kx = ±1.6 μm−1. In both cases, the fringe period amounts
to �kx = 0.088(5) μm−1 that, according to Eq. (5), should
correspond to a distance between WPs of d = 71(4) μm.
This is in good agreement with the experimental distance

seen in Fig. 3(b): The two components of each condensate,
nA

j and nB
j , are separated by d � 70 μm (see the dashed

arrows). Our findings are further supported by the Fourier
transform map of n(kx,ky) shown in Fig. 3(c): A well-defined
Fourier component at �X = d = 70 μm is obtained, in
accordance with the separation directly observed in real
space.

Coherence in real space has been profusely studied in cold
atoms [3,5,27], excitons [28,29], and polariton condensates
[2,30–34]. Our experiments also show interferences in real
space between two condensates, similar to those reported
in atomic BECs [3,5]. This is shown in Fig. 3(e) at 66 ps
when WPs ψA

2 and ψB
1 meet each other at x ∼ 0. The

appearance of interference fringes in real space, n12, signals
unambiguously to coherence between these two WPs. Since
real and momentum spaces are reciprocal to each other,
equivalent results for the interference patterns are expected.
The complementary expression in real space to Eq. (5)
now reads �x = 2π/κ , where �x is the period of the
fringes and κ the difference in momentum of the propagating
WPs. The experimental period of the fringes, seen in the
dashed-rectangle area in Fig. 3(e), �x = 1.99(17) μm, should
correspond to κ = (kx)A2 − (kx)B1 = 3.2(2) μm−1. This is again
borne out by our results, as shown in Fig. 3(d), where the
emission in k space shows clearly that WPs ψA

2 and ψB
1

are counterpropagating with kx = ±1.6 μm−1, respectively.
Figure 3(f) shows the Fourier transform of n12 in the region
enclosed by the rectangle in Fig. 3(e). It reveals a strong �Kx

Fourier component at 3.1 μm−1, in full agreement with the
value of κ displayed in Fig. 3(d). Let us also emphasize that
WPs first meet in real space at 66 ps, while interferences in
momentum space are seen as early as ∼10 ps, demonstrating
that the phase locking occurs before the WPs spatially
overlap.

The third result that we present corresponds to the arrival
at 108 ps of ψA

2 and ψB
1 to the excitation regions B and A,
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FIG. 3. (Color online) (a) Momentum distribution n(k), at 35 ps after the excitation, showing the condensates ncoh
1 and ncoh

2 at kx =
∓1.6 μm−1, respectively. (b) Corresponding n(r) distribution showing WPs nA

1 , nA
2 , nB

1 , and nB
2 . (c) Fourier transform of n(k), obtaining a

frequency at �X = d = 70 μm. (d) Momentum distribution n(k) at 66 ps showing nB
1 and nA

2 at kx = ∓1.6 μm−1, respectively. (e) Real-space
distribution n(r) showing the interferences of n12 at x = 0, created by the overlapping in real space of ψB

1 and ψA
2 . The white dashed rectangle

marks the region of interest where the interference occurs. (f) Fourier transform restricted to the region of interest in n(r), showing a frequency at
�Kx = κ = 3.2 μm−1. (g) Momentum distribution n(k) at 108 ps, showing the interferences n12 at kx ∼ 0. (h) Corresponding n(r) distribution
showing nB

1 and nA
2 . (i) Fourier transform of n(k), obtaining a frequency at �X = d12 = 60 μm. Intensities in the false color scales for

momentum, real, and Fourier spaces are normalized to unity. The tilt in all panels originates from the orientation of the ridge with respect to
the entrance slit of the spectrometer. The white dashed arrows mark the distances in real and momentum space between WPs. The solid arrows
show these distances in the corresponding Fourier transform. Supplemental Video S1 (S2) shows the time evolution of the emission in real
(momentum) space [20].

respectively. Here, they run into the hills of the photogenerated
potentials VB and VA that elastically convert their kinetic
energy into potential energy [35]. They slow down, halting,
providing a new separation between WPs nA

2 and nB
1 , d12 ∼

60 μm [see Fig. 3(h)]. Their emission in momentum space,
arising from kx ∼ 0, evidences an interference pattern with
�kx = 0.108(5) μm−1 [n12; see Fig. 3(g)]. Once again,
Eq. (5) predicts a separation d12 = 60(4) μm between nA

2
and nB

1 , as observed in the experiments. For completeness,
we also show in Fig. 3(i) the Fourier transform map of the
density that exhibits an emerging component at �X = d12 =
60 μm. Further insight into this scaling behavior, relating
distances in real space between WPs with the fringe period in
momentum space, is presented in the Supplemental Material
[20].

III. CONCLUSIONS

In summary, the convenience of monitoring the evolution
of exciton polaritons in semiconductor microcavites, through
the detection of emitted light, makes this system an ideal
platform to study quantum coherence properties in real space

as well as in momentum space. Profiting from this fact, we have
demonstrated the existence of quantum remote coherence be-
tween spatially separated polariton condensates whose phase
is determined by the symmetry of the excitation conditions
and therefore is constant in each realization of our multishot
experiments. This issue is related to the superposition principle
in quantum mechanics and it is crucial to understand how
mutual coherence is acquired.
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