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Polarized emission in polariton condensates: Switching in a one-dimensional natural
trap versus inversion in two dimensions
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We perform polarization resolved spectroscopy of two- and one-dimensional microcavity-polariton conden-
sates, which are formed by exciting the system in the optical parametric oscillator configuration. We observe
polarization inversion for linearly polarized pumping parallel to the wire in both the 1D and 2D systems. As the
polarization plane of the pump is rotated, the degree of linear polarization of the 2D system oscillates between
orthogonal polarizations with the same period as that of the pump. However, the 1D system switches abruptly
between two states of high degree of linear polarization with half the period. Two complementary models,
based on semiclassical Boltzmann kinetic equations and the Gross-Pitaevskii equation, respectively, obtain an
excellent agreement with the experimental results, providing a deep insight into the mechanisms responsible for
the polarization switching.
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I. INTRODUCTION

Microcavity exciton-polaritons are composite bosons that
result from the strong coupling between a confined electro-
magnetic field in a microcavity and bound electron-hole pairs
in an embedded quantum well. Since the first experimental
evidence of strong coupling in microcavities 20 years ago,1 and
the subsequent realization of macroscopic coherent polariton
condensates2 there has been an extensive activity devoted
to the rich phenomenology found in such systems including
vortices,3,4 fluid dynamics,5 and solitons.6,7

The excitonic component of the quasiparticle allows
polariton-polariton scattering due to Coulomb interactions.
Efficient optical parametric oscillator (OPO) behavior can
be achieved due to the particular shape of the polariton
dispersion. Pumping the microcavity resonantly close to the
inflection point of the lower polariton branch (LPB), one
injects polaritons at a given wave vector and energy, which
scatter, due to the strong nonlinearity present in the system, into
signal and idler states conserving energy and momentum.8,9 A
nonlinear increase of the signal-state population for excitation
power densities above a threshold value leads finally to
condensation at the signal state.9,10

In microcavities with reduced dimensionality, the additional
confinement produces multiple photonic modes and therefore
the polariton dispersion shows multiple branches as well.
Coupling between the additionally quantized photonic states
with the exciton modes has been demonstrated in μm-wide,
etched photonic wires.11 In microcavity wires, different types

of OPO processes have been realized.12,13 The phase-matching
conditions are not so restrictive as in the case of planar
microcavities allowing parametric scattering between different
branches in the sub-LPB’s, between the upper and the lower
branches, and even parametric processes when the cavity is
pumped normally, conserving either energy12 or momentum.13

A recent study reviews the polaritonic mode structure of 1D
systems and focuses on their power dependence for different
polariton-exciton detunings.14

Polaritons are promising candidates for novel optical
devices due to their spin structure, consisting in two spin
projections on the structure growth axis. Their spin dynam-
ics was studied for nonresonant pumping15,16 and for the
OPO process.17–19 Other spin dependent phenomena have
been proposed and demonstrated experimentally.20–25 For
possible future devices that might exploit spin properties,
room-temperature operation is a further requirement. In this
context, polariton lasing has been achieved in GaN-based
microcavities.26

An inversion of the linear polarization (90◦ rotation) of the
2D-OPO signal with respect to the polarization of the pump
has been reported previously.19 This was explained in terms of
the negative ratio of the scattering cross-sections of polaritons
with opposite and parallel spins, which are dominated by
exchange interaction. Rotation of the linear polarization as well
as conversion from linear to circular polarization have been
observed in Ref. 27. These results were modeled taking into
account the existence of a TE-TM splitting,28 the self-induced
Larmor precession, due to the splitting between the spin-up and
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spin-down polaritons, and polariton-polariton interactions. In
1D-microcavities, an inversion of the linear polarization of the
signal and idler with respect to that of the pump, in interband
parametric scattering processes, has been reported,13,29 but
only for particularly selected polarization conditions of the
excitation.

A key hypothesis made usually in the literature to the-
oretically describe these phenomena is that the splitting
between polarization eigenmodes is small. Two polarization
eigenstates are modeled as a single state of given energy
subject to an effective magnetic field, which induces rotation
of the polariton pseudospin. This approach neglects that the
scattering rates toward the split states are slightly different,
and in fact the description breaks down if the polarization
splitting is large. This is in general the case in 1D systems
where the splitting between longitudinal and transverse modes
is comparable with the splitting between different confined
modes.

In this report, we present a full study of the polarization
properties of the light emitted from co-existing 2D and 1D
polariton condensates in a GaAs-based microcavity pumped
in the conventional intraband OPO regime, as a function
of the angle of the linear polarization of the excitation.
Our experiments confirm the previously reported results for
the 2D case, however, by reducing the dimensionality of
the system from 2D to 1D, the polarization properties are
strongly modified. By rotating the polarization plane of the
pump beam, we observe an abrupt switching behavior of
the OPO condensate emission between two highly linearly
polarized states. Interestingly, the switching between these
states occurs with the double frequency of that of the rotation
of the pump’s polarization plane. An extension of the existing
spin-dependent semiclassical Boltzmann kinetic equations,
taking explicitly into account the large polarization splitting
value, is presented and fits excellently the experimental data.
Real-space simulations done with Gross-Pitaevskii equations
also confirm our interpretation of the experiments.

II. EXPERIMENTAL DETAILS

The sample30 is based on a GaAs λ microcavity
sandwiched between two 16 (20) pairs of AlAs/Al0.15Ga0.85As
distributed Bragg reflectors (DBR). A 10-nm-wide
GaAs/Al0.3Ga0.7As single quantum well is placed in the
antinode of the confined optical field; its energy integrated
emission under nonresonant excitation conditions is depicted
in Fig. 1(a). Strong light-matter coupling results in the
formation of upper and lower polariton branches with a Rabi
splitting of �� = 4.2 meV at zero detuning. Further details of
the system, with special emphasis on its coherence properties
and the coexistence of 2D and 1D condensates, have been
reported previously.31 From the Fourier spectrum of the g(1)

function, a lifetime of ∼2 ps has been determined. The
sample is cooled down to a temperature of T = 10 K in a
cold finger cryostat. It is excited with a continuous-wave,
ring-cavity Ti:Al2O3 laser with a mono-mode linewidth of
∼75 kHz in an OPO configuration [see Fig. 1(b)]. The laser
is focused onto a spot of ∼50 μm diameter. Figure 1(c)
shows a scheme of the experimental setup. The overall
numerical aperture of the optical system is 0.32, limited by the

.

.

.

.

FIG. 1. (Color online) (a) Energy-integrated emission image of
the sample for non-resonant excitation. (b) Scheme of the OPO
excitation configuration:p, s, i correspond to the pump, signal and
idler states, respectively. (c) Scheme of the experimental setup: The
pump laser is passed via mirror “M” through polarization optics
(linear polarizer “pol”, half-wave plate “λ/2” and a beam-splitter
“BS”. It is focused onto the sample by an objective “O”, which
also collects the emission from the sample. This emission is passed
through a telescope and polarization optics (quarter-wave plate “λ/4”,
etc.). The lenses “LR” and “LK” image the Fourier plane (momentum
space) of the objective lens “O”, while, if lens “LK” is removed, lens
“LR” images the real space. The dove prism is used to rotate the
image, when needed. The lower part shows the telescope in more
detail: A slit is placed in the common focal plane of two lenses “LT”
with focal length ft . fO , fR and fK are the focal lengths of the
objective, “LR” and “LK” lenses, respectively.

components of the imaging optics, corresponding to a wave
vector range of ±2.5 μm−1 or collection angles of ±20◦. For
momentum-space imaging, an additional lens (LK) is placed
in the optical path in order to image the Fourier plane of
the collection lens (O). The polarization is analyzed with a
sequence of polarization optics consisting of a half-wave plate,
quarter-wave plate, and linear polarizer.

III. RESULTS AND DISCUSSION

A. Real- and momentum-space imaging

1. 2D phase-matching conditions

For our experiments, we exploit the presence of other-
wise undesired defects in the sample. Most semiconductor
microcavities exhibit different kinds of defects due to strain
relaxation during the growth process, which originates from
impurities or lattice constant mismatch of the different semi-
conductor layers. The latter is a typical phenomenon of the
multilayer DBR structure and leads to cross-hatching,32 with
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FIG. 2. (Color online) Real-space emission, and polariton dis-
persion for 2D phase-matching conditions. In (a), the normalized
real-space emission is shown, integrated in energy and in a linear
false-color scale, in a region of the sample where the planar cavity is
split by a line defect; (b) shows the dispersion taken along the axis of
the 1D system. Here, both systems show nonlinear emission from the
bottom of their respective branch. In (c), the dispersion is normal to
the 1D system: marked differences are seen, the 1D system shows no
dispersion while the 2D remains the same. A logarithmic false-color
scale is used for (b) and (c).

1D defects along the crystallographic axes and this is the
plausible origin of the 1D defect we choose to investigate.
Figure 1(a) shows the nonresonantly excited emission of the
studied natural wire. We note that the luminescence is not
arising from a defect but from a region of the sample where
defects of the DBRs create localized states, similarly to what
has been reported.33,34 In Fig. 2(a), the real-space emission,
integrated in energy, of an area around the defect is shown
for excitation in the OPO configuration using the appropriate
phase-matching conditions. The system is pumped ∼1.7 meV
above the bottom of the 2D-LPB with an excitation energy of
1551.9 meV and an in-plane wave vector of kx ∼ 2.0 μm−1,
corresponding to a pump angle of 14.7◦.

The angle (or, equivalently, the corresponding k value)
of the excitation cannot be extracted from the momentum-
space images [see Figs. 2(b) and 2(c)]. What is seen there
is reflected plus scattered laser light. The component of
the wave vector parallel to the wire is basically negligible.
Furthermore, in order to keep the experimental realization of
the OPO configuration as simple as possible, the experiments
are restricted to the most symmetric situation, i.e., keeping the
plane of incidence normal to the axis of the wire (ky = 0). If the
plane of incidence would not be normal to the axis wire, one
would be changing the OPO configuration and simultaneously
more complicated polarization selection rules would apply.

The emission in the area of the spot shows two rather rect-
angular shaped 2D condensates, with an 1D wire condensate
vertically aligned in-between them. The particular rectangular
shape and lines of the emission support the idea of strong
cross-hatching due to DBR strain relaxation. The long-range
coherence properties of this system have been studied and
confirm the presence of a macroscopic quantum condensate.31

Figures 2(b) and 2(c) show the energy-momentum dis-
persion along the ky and kx directions, respectively. For
the k-space imaging, we use a telescope, with a slit in the
real-space plane [see Fig. 1(c)], in order to filter spatially the
emission from the 2D area. The results shown in Fig. 2(b)
have been obtained with the slit in the telescope set in such

a way that the intensities of the 2D and 1D condensates
are similar so that their dispersion characteristics can be
compared simultaneously. In the ky direction, parallel to the
wire [Fig. 2(b)], two dispersions are clearly observed, an
energetically lower and another higher one corresponding to
the LPBs of the 1D and 2D systems, respectively. Strong
emission located in momentum space at the bottom of the
LPBs at k = 0 indicates that phase-matching conditions are
sufficiently fulfilled for both the 1D and 2D systems. For a
pump power P = 164 mW, well above the threshold Pth =
76 mW, two condensates are formed at the lowest subbands,
E1D = 1549.5 meV and E2D = 1550.2 meV, respectively.
Figure 2(c) shows the dispersion along the kx direction,
perpendicular to the wire. The additional confinement in this
direction leads to a further quantization of the microcavity
states11,35 and in particular to a flat polariton dispersion in the
direction normal to the wire at the lowest energy.

2. 1D phase-matching conditions

It is possible to selectively generate the 1D condensate only
by fine adjustment of the excitation to the phase-matching
conditions of the wire, i.e., lowering the excitation energy to
E = 1550.8 meV and choosing an in-plane wave vector of
kx ∼ 1.55 μm−1, corresponding to a pump angle of 11.4◦,
as demonstrated in the real-space image in Fig. 3(a). Now,
only the emission of the 1D wire is observed, while no
condensation occurs in 2D. Figures 3(b) and 3(c) show the
polariton dispersion parallel and perpendicular to the wire,
respectively, and confirm the presence of a wire condensate
at k = 0 and the absence of the 2D condensate. Note that the
excitation energy is still well above the 2D condensate energy,
as observed in Fig. 2, and also above the LPB, but the strict
2D phase-matching conditions impede the formation of the 2D
OPO.

One should note that the main purpose of the momentum-
space images, shown in the Figs. 2(b), 2(c), 3(b), and 3(c) is
to visualize the dispersion relations of the 1D and 2D system

FIG. 3. (Color online) Real-space emission, and polariton dis-
persion for 1D phase-matching conditions. In (a), the normalized
real-space emission, integrated in energy, at the same region as in
Fig. 2 is shown in a linear false-color scale, but now there is only
significant emission from the 1D condensate. (b) Dispersion taken
along the axis of the 1D system. Here, the 2D polariton dispersion
does not show condensation, whereas in the 1D system nonlinear
emission is found. In (c), the dispersion is normal to the 1D system:
marked difference are seen, the 1D system shows no dispersion while
the 2D remains the same. A logarithmic false-color scale is used for
(b) and (c).
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for different directions. A quantitative analysis of the results
shown in these figures is neither needed nor performed for
our studies. Slightly different alignment of the imaging optics
produces differences between Figs. 2(b) and 2(c) regarding
intensities, energy shifts and dispersion curvatures. The same
effect is observed comparing Figs. 3(b) and 3(c).

The larger energy blue shifts seen in Figs. 2(b) and 2(c) as
compared to those in Figs. 3(b) and 3(c) arise from differences
in the occupancy of the different states. The higher density
of 2D polaritons, and consequently the increased polariton-
polariton interactions in the condensed phase [see Figs. 2(b)
and 2(c)], leads to a blue shift of ∼0.5 meV for the 2D system
with respect to the noncondensed situation [see Figs. 3(b) and
3(c)]. For the same reason, the condensed 1D polariton state
shifts also to higher energies, although by a smaller amount.

B. Polarization studies

We now investigate in detail the polarization properties
of the system. The polarized emission of the signal state is
studied, as a function of the angle, θP , of the linear polarization
of the pump laser, for phase-matching conditions set for the 2D
LPB. Spatially resolved false-color maps of the degree of linear
polarization (DLP) of the emission are shown in Fig. 4. The
DLP = (I⊥ − I‖)/(I⊥ + I‖) is obtained for each point from
spatial emission patterns, similar to those shown in Figs. 2(a)
or 3(a) but polarization-resolved ones. The orientation, θP ,
of the linearly polarized excitation varies for the four panels:
θP = 0 (normal to the wire), θP = 20◦, θP = 45◦ (diagonal)
and θP = 90◦ (parallel to the wire). In Fig. 4(a), the pump
polarization is aligned perpendicularly to the wire and it is

FIG. 4. (Color online) False-color intensity maps of the DLP for
selected values of θP . The arrows depict the plane of the pump’s
polarization. In (a), θP = 0◦, the polarization of the emission from
the 2D system is opposite to that of the laser, while the 1D condensate
keeps the same polarization of the pump. In (b), θP = 20◦, the DPL
of the 2D condensate decreases and that of the 1D system vanishes. In
(c), θP = 45◦, the 2D condensate exhibits a negligible DLP, while the
1D emission is highly polarized parallel to the wire. In (c), θP = 90◦,
both condensates show an inversion of the polarization plane with
respect to that of the laser. Dashed boxes show the area of integration,
used to obtain the curves in Fig. 5.

observed that the polarization of the 2D polaritonic emission
is rotated by 90◦ with respect to that of the pump laser (blue
colors). However, the polarization of the light emitted from
the wire coincides with that of the pump polarization (red
colors). In Fig. 4(b), for θP = 20◦, the 2D emission shows a
slight decrease in the DLP, while the DLP of the 1D system
becomes nearly zero. Figure 4(c) corresponds to the diagonally
polarized excitation: now the DLP of the 2D emission vanishes,
whereas in the 1D system, a high negative DLP is observed.
Finally, when the system is excited with polarization parallel
to the wire [see Fig. 4(d), θP = 90◦], both polarizations of the
1D and 2D emissions are rotated by 90◦ with respect to that of
the pump laser.

Looking into the details of the DLP patterns shown in
Fig. 4, a fine structure is observed, which is not further studied
here since we are interested in the overall DLP behavior
as a function of the laser polarization plane. However, the
resolution of this fine structure demonstrates the power of
polarization-resolved emission studies compared to regular
photoluminescence ones [see Figs. 1(a), 2(a), and 3(a), where
this fine structure is not resolved].

Figure 5 compiles the emission DLP as a function of
θP in more detail. These data are obtained by integration
and normalization of areas in the DLP maps that are de-
picted as dashed boxes in Fig. 4. Figures 5(a) and 5(b)
show the results discussed above for 2D phase-matching
conditions, while Fig. 5(c) corresponds to 1D phase-matching
conditions.
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FIG. 5. (Color online) Degree of linear polarization as a function
of the linear polarization angle of the pump: Color bars next to the
vertical and bottom axis represent the DLP of the emission and the
pump, respectively. At θP = 0◦ (θP = 90◦ ), the laser is polarized
normal (parallel) to the wire, as indicated by the ⊥ (‖) symbol.
The symbols at the ordinates indicate the main orientation of the
emission’s polarization plane: ⊥ (‖) perpendicular (normal) to the
wire axis. (a) The evolution of the DLP for the 2D system, for 2D
phase-matching conditions. (b) The evolution of the DLP for the 1D
system, for 2D phase-matching conditions. (c) The evolution of the
DLP for the 1D system, for 1D phase-matching conditions. The solid
lines (red open points) are calculated DLPs using the Boltzmann (GP)
model.
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1. Analysis of the 2D case

For the 2D condensate, Fig. 5(a), it is observed that the DLP
changes, in a sinusoidal-like fashion, between −0.5 and 0.4,
when varying the pump polarization angle θP . In particular,
for perpendicular (⊥) and parallel (‖) polarized excitation
with respect to the wire, the emission polarization is rotated
by 90◦. Linear polarization inversion is a typical behavior
of microcavity polariton systems, which has been previously
observed experimentally27 and explained theoretically19 in
terms of polariton-polariton scattering. It confirms that in our
system the interaction constants of same- and opposite-spin
polaritons are of opposite signs and that the interaction
between polaritons of opposite spins is attractive.36 We note
that when the OPO is pumped with circular polarization,
the signal state is completely driven by the laser, as in
Ref. 17, and inversion is neither observed for the 2D nor the
1D condensate.

2. Analysis of the 1D case

The DLP of the 1D wire emission for the 2D phase-
matching conditions, Fig. 5(b), is remarkably different to the
one observed for the 2D condensate. Now the emission is
polarized either parallel or normal to the wire with high DLP up
to −0.7 and 0.8, respectively. Moreover, the transition between
these two polarization states is very abrupt. Note that the
diagonal and circular polarization components (not shown) for
any angle of polarization of the excitation remain below 15%
and 10%, respectively. Linear polarization inversion has also
been observed in interband parametric scattering processes in
polariton wires13,29 for specific excitation conditions. Further-
more, our study, performed over the full range of the angles of
the pump’s polarization, reveals not only the inversion but also
switching of the polarization with the double frequency of the
rotation of the pump’s polarization plane. Figure 5(c) shows the
evolution of the wire DLP for 1D-condensate phase-matching
conditions: compared with Fig. 5(b) no significat differences
are observed, suggesting that the 2D and 1D systems are
decoupled.

C. Theoretical modeling

In order to describe and interpret our experimental results,
we have used two complementary models: (i) the coupled 2D
spinor Gross-Pitaevskii equation for excitons and Schrödinger
equation for photons;37 (ii) the semiclassical Boltzmann
equations for populations and pseudospins of pump, signal
and idler.38 The former model allows to obtain spatial images
similar to the experimental ones (see Fig. 4), but is numerically
very heavy, while the latter one captures the essence of the
physics involved and allows to reproduce the DLP in the 2D
and 1D cases (see Fig. 5) when there is no need for spatial
resolution.

1. Gross-Pitaevskii approach

In the first model, we write the coupled equations for
a 2D four-component exciton-photon wave-function com-
posed of a photonic fraction ψ↑↓(x,y) and an excitonic

fraction ϕ↑↓(x,y):

i�
∂ψ↑↓
∂t

= − �
2

2mph
�ψ↑↓ + ��R

2
ϕ↑↓ + Hxψ↓↑

+Uψ↑↓ − i�

2τph
ψ↑↓ + P↑↓ + f↑↓, (1)

i�
∂ϕ↑↓
∂t

= − �
2

2mX

�ϕ↑↓ + ��R

2
ψ↑↓ + α1|ϕ↑↓|2ϕ↑↓

+α2|ϕ↓↑|2ϕ↑↓. (2)

Here, mph = 4 × 10−5 m0 is the photon mass, mX = 0.6 m0 is
the exciton mass, m0 is the free electron mass, ��R = 4.2 meV
is the Rabi splitting, α1 = 6 Eb a2

B and α2 ∼ −0.01 α1 are
the triplet and singlet interaction constants,36 respectively.
Eb = 10 meV is the exciton binding energy and aB = 10 nm
is the exciton Bohr radius. The potential acting on photons,
confining them in the trap of width 4.25 μm and depth 0.6 meV,
is described by U . τph = 1 ps is the photon lifetime (the exciton
decay is neglected), P is the quasiresonant pumping term,
exciting the system at a given frequency ω ≈ 1.6 meV/�

above the bottom of the polariton branch and f is the
noise, which serves to account for the effects of spontaneous
scattering. Pumping provides an average of 10 particles in a
0.25-μm-wide unit cell in the steady state, and the spontaneous
scattering creates 0.01 particles. The term Hx = 30 μeV
describes the effective magnetic field (polarization splitting
of 60 μeV) acting only inside the 1D wire.

The results of the simulations performed for the same
four orientations of the pump polarization as in the exper-
iments (θP = 0◦,20◦,45◦, and 90◦) are presented in Fig. 6,
which reproduce qualitatively the experimental observations
of Fig. 4. In these simulations, as in the experiments, in the
2D region, the polarization is always inverted because of the
opposite signs of α1 and α2, while in the quantized 1D region
the polarization is determined by an interplay between the
signs of the α’s coefficients and the splitting between the
parallel and transverse polarized modes, as explained in detail
below.

P=0° P=20°

P=45° P=90°

FIG. 6. (Color online) Calculated false-color intensity maps of
the DLP of the signal state for selected values of θP : (a) 0◦, (b) 20◦,
(c) 45◦, and (d) 90◦.
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Note that in the simulations, the 2D condensate extends
over the entire area shown in the figure, in contrast to
the experiments, where the condensate’s extension is about
40 μm. Also, the DLP is higher in the calculations than
in the experiments, however, a qualitative overall agreement
between experiment and theory is evident. Although this
model is nicely fitting the experiments, it is quite demanding
numerically because of the need for a large 2D grid, a
small step size to describe accurately the potential defect
and the profiles of the modes, and long calculation times
necessary to obtain spontaneous OPO with a relatively weak
noise.

2. Semiclassical Boltzmann approach

This approach considers only the three strongest populated
modes (pump, signal and idler), while all others are neglected,
which greatly improves the computational efficiency of the
model. Using the experimental evidence of decoupled 2D
and 1D systems, we calculate these regimes separately.
The system of equations describing the dynamics of the
pump, signal and idler populations and their pseudospins is
written as

dNk↑,↓
dt

= − Nk↑,↓
τk

+
(

dNk↑,↓
dt

)∣∣∣∣
rot

+
(

dNk↑,↓
dt

)∣∣∣∣
p−p

+Pk,

(3)

dSk

dt
= −Sk

τk

+
(

dSk

dt

)∣∣∣∣
rot

+
(

dSk

dt

)∣∣∣∣
p−p

+ Pk, (4)

where Nk↑,↓ are the z projections of the populations and
Sk is the in-plane pseudospin. Thus Sk contains the Sx

and Sy components, while the Sz projection is given by
N↑ − N↓. Here, k = p,s,i corresponds to the pump, signal
and idler states. τk is the lifetime of the corresponding
state, and Pk is the pumping term (Pp = P , Ps,i = 0). The
semiclassical equations take into account the spontaneous and
the stimulating scattering processes. We solve these equations
separately for each case presented in Fig. 5: 2D [see Fig. 5(a)],
1D out-of-resonance [see Fig. 5(b)], and 1D resonant case [see
Fig. 5(c)]. All other relevant details of the model are given in
the Appendix.

These equations were used very efficiently to describe the
polarization dynamics in various OPO configurations,27,39 but
always in the 2D case of planar cavities. The result of the
simulation for the 2D system is presented as a solid line in
Fig. 5(a) giving a very good agreement with the experimental
data and showing polarization inversion.

However, the observed effects in the 1D case are not limited
to a simple polarization inversion, and the model requires
to be extended. The strong splitting between the linearly
polarized polariton modes has not been treated so far. This
splitting is of the order of 0.1 meV, and its effect is not
limited to a simple precession of the polariton pseudospin in an
effective magnetic field, analogous to the TE-TM field. It also
affects energy conservation of polariton-polariton inelastic
scattering processes, causing slightly different scattering rates

FIG. 7. (Color online) Spectrally resolved false-color polariza-
tion maps for the degree of linear polarization, with the same selected
values of θP as in previous figures. In (a), the 1D system shows
emission polarized normal to the wire at ∼1549 meV. (b) Two lines
with opposite polarization in the 1D condensate are resolved: at low
(high) energy, the emission is polarized normal (parallel) to the wire.
In (c), again a single line is emitting. (d) The emission from the
1D system becomes again polarized normal to the wire. The square
brackets in (a) delimit the range, along the wire, used to integrate the
polarized emission that is shown in Fig. 8.

into parallel and normal modes. This can be taken into
account in the three-level model by introducing a new term
to Eq. (4) describing the pseudospin dynamics of signal and
idler:

+exδW

(
dNj

dt

)∣∣∣∣
p−p

, (5)

where j = s,i stands for signal and idler, respectively. This
term describes the dynamics of pseudospin projection on
the unit vector ex along the x axis of polaritons scattered
into s and i and is proportional to the relative difference
between the scattering amplitudes into the linear modes δW =
(W⊥ − W‖)/(W⊥ + W‖). δW originates from the difference in
the overlap integrals between the states localized in the trap
and the extended propagating states of the pump and the idler.
Indeed, the trap is wide enough to contain several quantized
levels. The highest levels of the two orthogonal polarizations
that become strongly populated in the experiments (see Figs. 7
and 8) do not have the same transverse quantum number n.
Otherwise, the transverse-polarized state ⊥ would be higher
in energy than the longitudinal-polarized state ‖ because of
the longitudinal-transverse splitting. The overlap integrals,
contained in the scattering rates W , exhibit a 1/n dependence,
implying that scattering into the lower lying states is favored.
On the other hand, phase matching conditions favor the
population of higher lying ones. This balance leads actually
to a further decrease of δW . Thus this term is comparable
to the one responsible for polarization inversion (the latter is
proportional to α2/α1) and the competition between them can
determine the relative sign of the signal’s and pump’s DLP.
Values of α2/α1 = −0.01 and δW = 0.008 are typically used
in the simulations.
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FIG. 8. (Color online) Emission spectra of the wire condensate
for different θP . Polarization fine structure is observed and attributed
to internal strain. The modes LP1D

‖ and LP1D
⊥ are polarized parallel

and normal to the wire, respectively.

This additional contribution would produce a linear po-
larization in the signal even for an unpolarized pump. Since
scattering into one of the two polarization eigenstates is more
efficient, it becomes populated stronger, which leads to an
increase of the DLP. The interplay between the polarization
inversion and the generation of linear polarization explains the
observed DLP of the signal state in Figs. 5(b) and 5(c) for
2D and 1D phase matching conditions, respectively. Since the
linear polarization is generated by the presence of the confining
potential, the resulting behavior is essentially the same for both
cases.

A good agreement between both models concerning the
DLP of the wire is obtained: the results of the GP simulation
of Fig. 6 are depicted as red open points in Fig. 5(b).
They coincide well with the results of the Boltzmann model.
Both theoretical approaches allow us to conclude that the
peculiar behavior of the DLP for the 1D case is a re-
sult of the competition between the polarization inversion
mechanism and the difference between the scattering rates
towards the polarization eigenstates, which are quantized
in the wire. The inversion mechanism is based on the
spin-anisotropy of the interactions, which acts both for 2D
and 1D. The nonlinearity of the OPO configuration does
not allow representing the signal DLP simply as the sum
of the two effects and the resulting curve becomes not
sinusoidal. This competition and the nonlinearities imply that
the results would differ for a wire characterized by different
parameters.

D. Polarization fine structure

The Boltzmann model renders well the change of the DLP
for the 1D and 2D condensates and implies orthogonal, linearly
polarized states with different polariton-polariton scattering
rates. Indeed, our experiments reveal the existence of such

polarization fine structure. We show in Fig. 7 spectrally and
spatially resolved polarization false-color intensity maps of
the 1D system for varying angle θP of the polarization of
the pump under 2D phase-matching conditions. In the x

direction, ∼1 μm has been integrated to obtain these maps.
Red and blue represent, as in the previous figures, linear
polarizations normal and parallel to the wire axis, respectively.
Note that higher values for the DLP than those depicted in
Figs. 4 and 5 are obtained, since the nonpolarized emission
arising from the uncondensed phase is now spectrally filtered
out.

The two energetically highest lying lines at ∼1552 meV
and ∼1550 meV correspond to the excitation laser and the
emission from the 2D system, respectively. In Fig. 7(a), the
angle θP is zero and the polarization of the emission at
∼1549 meV of the 1D system is the same as that of the
excitation. However, for θP = 20◦, shown in Fig. 7(b), the
emission of the 1D system consists of two split lines, each one
with opposite linear polarization. In Fig. 7(c), θP = 45◦ and the
1D system again shows just a single emission line polarized
parallel to the wire. For an angle θP = 90◦, the 1D system
exhibits again emission of high DLP and polarization inversion
occurs.

The polarized wire emission integrated along the wire, in
the range enclosed by square brackets in Fig. 7, is shown in
more detail in Fig. 8 for selected polarizations of the pump.
The emission spectra exhibit shoulders, which suggests that
more than one mode are excited, however, in the presented
measurements they cannot be resolved due to experimen-
tal limitations. Furthermore, for all pump polarizations, a
polarization splitting of the wire LPB into two orthogonal
linearly polarized modes LP1D

‖ and LP1D
⊥ is obtained: they are

polarized parallel and normal to the wire, respectively. Large
polarization splitting in polariton wires has been observed
previously and attributed to external strain.13,29,35 In our
samples, we observe marked cross-hatching suggesting the
presence of large internal strain fields, which are possibly
the source of the polarization splitting.32 In Fig. 8, the
splitting between the linearly polarized modes appears to be
different in each of the Figs. 8(a)–8(d). One must consider
that several components are present in each emission band
(not resolvable due to experimental limitations) and that the
relative changes of intensity of each component, together
with the blue shifts due to polariton-polariton interactions,
lead to an apparent change of the splitting. In Figs. 8(a) and
8(d), the pump is polarized normal and parallel to the wire,
respectively: in both cases, the dominant emission originates
from the energetically lower lying, polarized normal to the
wire, mode LP1D

⊥ , while the intensity of parallel polarized
mode LP1D

‖ is small, giving rise to a high DLP. The spectra
in Fig. 8(b) (θP = 20◦) exhibit closer emission intensities
from both lines, and therefore a vanishing DLP is observed
in Figs. 4 and 5. Finally, in Fig. 8(c), the pump’s polarization
is diagonal and the emission arises mainly from the parallel
polarized mode LP1D

‖ rendering again a high DLP. In both
cases shown in Figs. 8(b) and 8(c), the larger emission arises
from the energetically higher lying state, LP1D

‖ , in contrast to
what would be expected for a thermal distribution. However,
polariton condensates, especially in the OPO regime, are
highly nonthermal. This is similar to the observation in Ref. 40,
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where a splitting in the linear polarization is reported and a
larger occupancy of the higher lying state is observed. This
fact has been attributed to crystallographic anisotropy and
pinning.

IV. CONCLUSIONS

In summary, we have investigated polarization properties
of 2D and 1D polariton condensates as a function of angle of
the pump’s polarization plane, θP . In both cases, we observe
polarization inversion for a pump polarization parallel to the
wire. However, for the 1D wire, as the polarization plane of
the excitation is rotated, we observe a switching between two
states of high DLP. The switching between the two states
occurs with the double frequency of the rotation of the pump’s
polarization plane. Two models, based on semiclassical
Boltzmann kinetic equations and the Gross-Pitaevskii
equation, respectively, are presented and reproduce well
the polarization rotation for the 2D condensate and in
particular the halved periodicity of the rotation for the 1D
limit.
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APPENDIX

Here, we give the details of the semiclassical Boltzmann
approach used to simulate the DLP in the 2D and 1D cases.
The rotational terms in Eqs. (3) and (4) describe the action of
various effective magnetic fields associated with polarization
splittings:

(
dNk↑
dt

)∣∣∣∣
rot

= −
(

dNk↓
dt

)∣∣∣∣
rot

= ez · [Sk × �LT, k] , (A1)

(
dSk

dt

)∣∣∣∣
rot

= [Sk × �int, k] + Nk↑ − Nk↓
2

�LT, k . (A2)

�LT, k is the effective magnetic field induced by the polariton
TE-TM splitting,28 �int is an effective field due to spin-
anisotropic interactions:

��int ,k = 2ez

∑
k′

(
V

(1)
k,k′,0 − V

(2)
k,k′,0

)
(Nk′↑ − Nk′↓) , (A3)

where V (1)and V (2) are the matrix elements of polariton-
polariton interactions described in detail below, and ez is a unit
vector in the z direction of the Stokes space, corresponding
to circularly polarized light. Finally, the polariton-polariton
scattering terms can be expressed as

(
dNk↑
dt

)∣∣∣∣
p−p

=
∑
k

′
,k

′′

{
W

(1)
k,k

′
,k

′′ [(Nk↑ + Nk′↑ + 1)Nk+k
′′ ↑Nk′−k

′′ ↑ − (Nk+k
′′ ↑ + Nk′−k

′′ ↑ + 1)Nk↑Nk′↑]

+W
(1)
k,k

′
,k

′′ [(Nk↑ + Nk′↓ + 1)(Nk+k
′′ ↑Nk′−k

′′ ↓ + Nk+k
′′ ↓Nk′−k

′′ ↑) + 2Sk+k
′′ · Sk′−k

′′ ]

− [Nk↑Nk′↓ + (Sk · Sk′ )](Nk+k
′′ ↑ + Nk′−k

′′ ↓ + Nk+k
′′ ↓ + Nk′−k

′′ ↑ + 2)

+ 2W
(12)
k,k

′
,k

′′ [Nk
′′ ↑(Sk′ · Sk′−k′′ ) + Nk′−k

′′ ↑(Sk′ · Sk+k′′) − Nk↑Sk′ · (Sk′−k′′ + Sk+k′′ )]

+W
(12)
k,k

′
,k

′′ [(Sk · Sk+k′′)(Nk′−k
′′ ↑ + Nk′−k

′′ ↓ − Nk′↑ − Nk′↓)

+ (Sk · Sk′−k′′ )(Nk+k
′′ ↑ + Nk+k

′′ ↓ − Nk′↑ − Nk′↓)]
}
, (A4)

(
dSk

dt

)∣∣∣∣
p−p

=
∑
k′,q

(
W

(1)
k,k′,q

2
Sk[Nk+q↑Nk′−q↑ + Nk+q↓Nk′−q↓ − Nk′↑(Nk+q↑ + Nk′−q↑ + 1) − Nk′↓(Nk+q↓ + Nk′−q↓ + 1)]

+W
(1)
k,k′,q[(Sk+q(Sk′ · Sk′−q) + Sk′−q(Sk′ · Sk+q) − Sk′(Sk+q · Sk′−q)]

+ W
(2)
k,k′,q

2
{2(Sk + Sk′ )[Nk+q↑Nk′−q↓ + Nk+q↓Nk′−q↑ + 2(Sk+q · Sk′−q)]

− [Sk(Nk′↑ + Nk′↓) + S1(Nk↑ + Nk↓)](Nk+q↑ + Nk′−q↑ + Nk+q↓ + Nk′−q↓ + 2)}
− 2W

(12)
k,k′,qSk[(Sk′ · Sk+q) + (Sk′ · Sk′−q)]

+ W
(12)
k,k′,q

2
Sk′−q{2[(Nk′↑ + 1)Nk+q↑ + (Nk′↓ + 1)Nk+q↓] + (Nk+q↑ + Nk+q↓ − Nk′↑ − Nk′↓)(Nk↑ + Nk↓)}

+ W
(12)
k,k′,q

2
Sk+q{2[(Nk′↑ + 1)Nk′−q↑ + (Nk′↓ + 1)Nk′−q↓] + (Nk′−q↑ + Nk′−q↓ − Nk′↑ − Nk′↓)(Nk↑ + Nk↓)}

)
.

(A5)
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An analogue expression to Eq. (A4) holds for(
dNk↓/dt

)∣∣
p−p

. These equations have been developed in the
past and used to describe numerous experiments on the polari-
ton OPO.27,39 They are presented here for the reader’s conve-
nience. The terms W (1), W (2), and W (12) represent polariton-
polariton interactions in different spin configurations:

W
(1)
k,k

′
,k

′′ = 2π

h

∣∣V (1)
k,k′,k′′

∣∣2
δ(�k + �k′ − �k+k

′′ − �k−k
′′ ), (A6)

W
(2)
k,k

′
,k

′′ = 2π

h

∣∣V (2)
k,k′,k′′

∣∣2
δ(�k + �k′ − �k+k

′′ − �k−k
′′ ), (A7)

W
(12)
k,k

′
,k

′′ = 2π

h
Re

(
V

(1)
k,k′,k′′ V

∗(2)
k,k′,k′′

)
× δ(�k + �k′ − �k+k

′′ − �k−k
′′ ). (A8)

Equations (A6)–(A8) are written for the most general case.
Taking into account the excitonic fraction of the relevant states,
and assuming a contact interaction for the matrix elements V,
therefore not depending on k, V (1) and V (2) correspond to
the α1 and α2 parameters of the Gross-Pitaevskii Eq. (2). We
assume for the calculations the usual ratio α2/α1 ∼ −0.01 (see
Refs. 27 and 36), which obtains a negative W

(12)
0,kp,kp

. Since the
expression for the in-plane pseudospin reduces to

dSs

dt
= W

(12)
0,kp,kp

(N↑p + Np↓)Sp , (A9)

the negative sign of W
(12)
0,kp,kp

leads to polarization inversion
during spontaneous scattering from the pump to the signal
state.
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