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Resonant light transport through Mie modes in photonic glasses
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We present an optical characterization of photonic glasses, composed of randomly arranged, monodisperse
dielectric spheres packed at high filling fractions. We provide a detailed optical study of the resonant behavior
of diffuse light transport through such systems. By means of independent static and dynamic measurements, we
show resonances in the transport mean free path, diffusion constant, and also energy velocity of light. We also
show that the main transport parameters can be controlled by varying the sphere diameter.
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I. INTRODUCTION

The control of light transport is crucial to design and tai-
lor new photonic devices with increased optical performance
in the same manner as controlling electron transport is at the
basis of semiconductor and electronic technology. In recent
years, a new frontier has emerged, with the goal of control-
ling light propagation through interference in artificially en-
gineered optical materials and metamaterials. Extraordinary
progress has been made in the fabrication of nanophotonic
structures, with many novel optical properties [1]. While (or-
dered) periodic photonic media, i.e., photonic crystals, take
advantage of the periodicity in the dielectric constant and the
consequent long-range correlation to mold the flow of light
[2,3], disordered ones, with no positional order, can still
strongly affect light transport [1,4—6] and, for example, in
the presence of short-range correlation, exhibit band-gap-like
effects [7]. Conventional nonabsorbing materials are homo-
geneous and nondispersive, i.e., they are clear and transpar-
ent, and phase and energy travel with the same velocity. Op-
tical propagation is then determined by the shape of the
interfaces between various such materials (e.g., a curve sur-
face boundary acts as a lens). If the material is absorptive,
dispersion is introduced (brought about by the Kramers-
Kronig relations) whereby the phase velocity loses most of
its usefulness, and group velocity (at which pulses travel)
takes over to describe the transport of energy. In contrast,
nonabsorbing but nanostructured materials can create a new
class of systems in which the dispersion is controlled via
light interference. Photonic band-gap materials, for instance,
are systems where extinction is built up from multiple inter-
ference (Bragg reflection) creating a region of extinction and
anomalous dispersion. In this way, the relevant velocities can
be engineered, for instance, to create devices for dispersion
compensation. An entirely new scenario is presented when
disorder is added to the mixture.

Usually, disordered media are opaque and white, i.e., non-
dispersive. In such a disordered medium, the group velocity
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can only be associated with the ballistic (or unscattered)
component, and therefore cannot be applied to describe the
transport of energy, which, for large enough optical thick-
nesses, is governed by the scattered light.

When this regime of diffusive propagation is set up, not
only phase but also group velocity fail to give an account of
light transport, and a new quantity describing the transport of
energy in the new diffusive regime is required. The velocity
of the scattered light propagation inside disordered media
needs to be defined by the velocity of the transported energy
and is given by the ratio of the energy flux to the energy
density in any point of the sample. This, in general, is very
complex and given neither by the group velocity nor the
phase velocity [8,9]. The energy velocity can be drastically
altered (reduced) in the presence of scattering resonances: in
an extreme case of light diffusion in a cold atomic cloud, the
atomic energy spectrum can be so resonant to the incident
light that the energy velocity can be as low as a few thousand
meters per second (v,/c~107) [10].

Disordered materials are composed basically by oxides or
semiconductor powders [11,12], random solid distributions
of polydisperse spheres [13,14], nanostructured semiconduc-
tors such as porous GaP [15], or by colloidal suspensions of
polymer spheres [7]. In ordinary disordered materials, like a
semiconductor powder, the individual modes of each build-
ing block are usually neglected and a homogeneous distribu-
tion of light, in wave vector and frequency, is assumed [1]. In
contrast, a single dielectric sphere with size comparable to
the wavelength of light can sustain electromagnetic reso-
nances, called Mie modes [16]. Figure 1 shows two different
modes in a dielectric sphere at two different energies [17].
These resonant electromagnetic modes in dielectric spheres
are analogous to electronic orbitals in atoms [18]. In this
work, we present a detailed characterization of the resonant
behavior of light transport through a resonant random mate-
rial we recently proposed and dubbed “photonic glass” (PG)
[19,20]. The main property of this new system compared
with other commonly used disordered materials is the mono-
dispersity of its constituents (Fig. 2). We discuss the proper-
ties of light diffusion through such a system and present the
optical characterization by means of static and dynamic mea-
surements. With an optical characterization of the system, we
also point out that light transport can be controlled by chang-
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FIG. 1. (Color online) Modulus of the scattered field for a
sphere diameter d=1100 nm and refractive index n=3.4 in the case
of low (d/N=0.33) and high energy (d/\=1.65). The confinement
of the mode is proportional to the Q factor of the spheres, which
increases with the field energy.

ing sphere diameter. In the final part of the paper, an estima-
tion of the energy velocity in the system and different theo-
retical approximations are also discussed.

II. PHOTONIC GLASSES PREPARATION

It is well known that submicrometer dielectric spheres are
able to self-assemble forming fcc structures, which are com-
monly called synthetic opals. These structures have been
widely used to study the properties of photonic crystals.

A synthetic opal is usually grown placing a clean mi-
croslide vertically in a vial containing an aqueous dilute col-
loidal suspension of spheres [21]. Charge interaction be-
tween the spheres allows them to self-assemble. The
modeling of the two-body sphere-sphere potential of an
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aqueous colloidal suspension represents a very complicated
problem [22] that can be approximated as a sum of two
terms: U(r)=@(r)+ U,qw(r), where ¢(r) is the electrostatic
repulsive potential due to the sphere surface charge and
U,qw(r) is the attractive van de Waals potential. We have
developed a method based on this two-body interaction be-
tween the spheres to grow completely disordered arrange-
ments of monodisperse (<2 %) dielectric spheres. This new
three-dimensional system constitutes a novel random mate-
rial for light: photonic glass [19,20]. The picture in the upper
panel of Fig. 3 shows an opal-based photonic crystal (with
visible iridescences related to Bragg reflections) and a pho-
tonic glass (white surface), both grown from polystyrene
(PS) spheres with d=1100 nm, where d is the sphere diam-
eter. The lower panel shows scanning electron microscopy
(SEM) images of the corresponding systems. Photonic
glasses can be grown very uniform, with areas of a few
square millimeters and thicknesses of some hundreds of mi-
crometers. The growth procedure consists in adding extra
charge (electrolytes) to the initial (extra charge-free) colloi-
dal suspension, which attenuates the surface sphere charge
and, therefore, ¢(r). Figure 4 shows the total interaction po-
tential, U(r), between spheres as a function of salt concen-
tration (thus of the extra charge concentration). The calcula-
tion of this interaction is based on the solution proposed in
Ref. [22]. Extra electrolytes (ions) can be produced by add-
ing salts (which dissociate producing ions in dissolution) or
acids (which also dissociate producing protons).

The attenuation of the repulsive potential gives rise to a
net attractive potential between spheres. In this case, the
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FIG. 2. (Color online) Top: (Left) Scanning electron microscopy (SEM) image from the photonic glass surface composed of polystyrene
(PS) spheres with a diameter of 1200 nm. (Right) SEM image from TiO, powder surface with an average particle diameter 850 nm. Bottom:
Corresponding histogram of particle sizes from the photonic glass (left) and TiO, powder (right).
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FIG. 3. (Color online) Top: picture shows an opal-based photo-
nic crystal (left) which shows visible iridescences due to Bragg
reflections and a photonic glass (right) white and without any trace
of Bragg features. Bottom: (Left) SEM image from a photonic crys-
tal cleaved edge (scale bar is 10 um). (Right) SEM image from a
photonic glass surface (scale bar is 10 um). Both samples are made
of PS spheres (2% of polidispersity measured by TEM) and have
centimeters squared areas and millimeters thickness.

number of effective collisions between spheres increases and
clusters are formed by flocculation in the suspension. The
number of effective collisions that give rise to sphere coagu-
lation grows due to the total potential attenuation. Then,
cluster size also grows with electrolyte concentration. With
the sedimentation of these clusters, a random arrangement of
spheres is formed. Lowering the repulsive potential, the size
of the clusters formed by flocculation is increased. The size
of these clusters has an important effect on the filling fraction
(ff) [23] of the system and strongly affects the physical pa-
rameters that describe light transport. Photonic glasses
grown from bigger clusters present a lower filling fraction
because the interclusters volume is empty. Changing the salt
concentration, we can grow PG with different ff. Figure 5
shows the average ff from different photonic glasses as a
function of the salt concentration (electrolyte concentration)
from 0.74 (the expected theoretical volume for a perfect fcc
structure) to 0.55. These measurements have been performed
weighing and measuring the total volume of the samples.
Large bar errors come, basically, from total volume measure-
ments, which were obtained with the help of a microscope.
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FIG. 4. Plot of two-body sphere-sphere potential U(r) vs re-
duced distance r/d for different electrolyte concentrations. The total
potential is relative to the thermal energy.
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FIG. 5. Plot of the average ff of a photonic glass as a function of
electrolyte (salt) concentration. Spheres that composed the glass are
1220 nm diam. Filling fraction can be estimated by weighting the
samples when their geometry is known. A concentration 0 M gives
rise to a well known opal-based photonic crystal where the total
volume occupied by the spheres is 74% of the total volume of the
unit cell in an fcc lattice.

III. DIFFUSE LIGHT TRANSPORT

A. Diffusion equation

When light travels through a PG it is multiply scattered.
Straight or ballistic propagation, which is characteristic in a
homogeneous medium, cannot describe accurately the trans-
port of flight. We will briefly review here the standard diffu-
sion model used to quantitatively describe light transport in
an isotropic random dielectric medium. The multiple scatter-
ing of light has a very complicated solution in terms of Max-
well equations when many scatterers have to be taken into
account. A model to solve this problem is the radiative trans-
fer equation of the dilute medium where phase and light
interference are neglected. The solution of the radiative
transfer equation can be considerably simplified by introduc-
ing further approximations. The diffuse approximation con-
siders a random walk of photons and imposes a continuity
equation for the light intensity I(7,7) disregarding interfer-
ence effects. Propagation of light can, therefore, be viewed
as a diffusion process such as gasses diffusing in a partial
pressure gradient. The most important parameter is the scat-
tering mean free path, €;, which is the average distance be-
tween two consecutive scattering events. This parameter sets
the limits of the diffusive approximation as N<<€ <L (sev-
eral scattering events occur before the light leaves the sys-
tem, where L is the system size, hereafter sample thickness)
and k€,>1 (limits the approximation to a dilute medium,
where k is the light wave vector). After several scattering
events, the light propagation is completely randomized. The
transport mean free path, €,, is defined as the average dis-
tance after which the intensity distribution becomes isotropic
and is the characteristic length in the regime of multiple scat-
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FIG. 6. Scheme of the light intensity vs distance into a slab of a
photonic glass. Extrapolation length z, and penetration length z,, are
shown.

tering. The transport of ballistic or unscattered light in such a
medium in space (r) and time () is dictated by the Lambert-
Beer equation, I(7,1)=I1(0,t)exp(-r/{,), while diffuse light
propagates according to the diffusion equation as follows:

ot £,

(ﬁ-p-vhﬁ)z(f,t):s(m). (1)
S(7,1) is the light source and v, is the energy velocity. Mul-
tiple scattering increases the interaction between light and
the system. When the material that composes the system pre-
sents absorption, its effect is increased in a diffusive propa-
gation. The inelastic absorption length, ¢;, is the average
depth at which light propagates ballistically (straightforward)
in a homogeneous medium before being attenuated by a fac-
tor e. The diffusive absorption length, €, is the distance light
propagates diffusively before being absorbed. Inside a diffu-
sive and absorbing material, €, is the penetration depth of the
diffuse light. Diffuse light propagates a greater distance than
in a homogeneous material to reach the same depth. For this,
€, is shorter than €;, However, both are not independent
functions but are related to ¢, as

€= \(L)/3. (2)

The experimental systems treated in this work have a slab
geometry that imposes certain boundary conditions on the
diffusion equation: the system can be considered infinite for
x and y directions and limited between z=0 and z=L. An
incident plane wave is originated at z=—% and, due to mul-
tiple scattering, decays exponentially inside the system ac-
cording to the Lambert-Beer equation. Dirichlet boundary
conditions to the diffusion equation are

T=—2¢1>»

1(z) =0 at { 3)

z=L+z,,

where z,; , are the extrapolation lengths, of the order of €|,
which are the positions where the diffusive light intensity is
zero and, eventually, can be different at the front and back
surfaces (if their reflectivities are different). A common phe-
nomenological way [24] to introduce a source is to consider
an exponentially decaying one, S(z)=S(0)exp(-z/z,), with a
penetration length z,. Figure 6 schematically reproduces a
slab geometry system with the parameters related to the dif-
fusion equation such as z, and the penetration length z,.
These lengths are typically set to be identical (z,=z,,).
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B. Stationary solution

The stationary solution of the diffusion equation leads to
the total transmission of light through a photonic glass slab
given by [25]

1 sinh[a(z, +z.)]sinh[az,]
az, sinh[a(L +2z,)]

1 <1+azo)
Ze=7—1In ,
2a 1 - az,

2 1+R
20= 5&(x)(lf—R). (4)

T(L,\) =

s

In the solution, @=1/¢; is the inverse absorption length and
R is the polarization and angular averaged reflectivities of the
boundaries [26]. As in electronic transport and in the absence
of absorption, doubling the thickness of the (optical) conduc-
tor halves the transmission. This is known as photonic Ohm’s
law. The diffusion of light in a disordered dielectric slab and,
in particular, a photonic glass leads to the photonic Ohm’s
law. The total light transmission through a photonic glass
slab is directly proportional to the transport mean free path,
€,, and inversely proportional to the slab thickness, T(\)
~{,(N)/L. Therefore, with static measurements of the total
light transmission through a slab with known thickness, it is
possible to obtain the absolute value of the transport mean
free path, €,.

C. Full time-dependent solution

The full solution of the time-dependent diffusion equation
with boundary conditions is given by [27]

%( > Aexp[-AY4D(M)1]

j:-m

T(t,\) =

- > Bexp[- Bz/4D()\)t]) ,

Jj=—°

A=(1-2)(L+2z,) -2z, +£,),

B=(2j+1)(L+2z,),

0
T = _L,
1 <1+azo)
Ze=7—In| — |,
2a 1-az
2 I+R
=—€,(\ , 5
<0 3 i )<1—R) (5)

where the inelastic absorption length, €;(\), turns into an
absorption or inelastic time 7,(\). The rate of diffuse light
transport in the photonic glass is defined by the diffusion
constant, D, given by Fick’s law [28]. This is, therefore, a
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FIG. 7. (Color online) Cartoon of the experimental setup to
perform static measurements. A slab of photonic glass with thick-
ness L is placed in the entrance of an integrating sphere and illumi-
nated with white light. Diffuse light is measured in the detector.

dynamic variable, and a time-resolved measurement of light
transmission is needed to obtain its value. The physical
meaning of the summatory in Eq. (5) can be understood as
follows: light that follows shorter optical paths thought the
slab is transmitted at earlier times, while light that performs
longer random walks emerges at much longer times. The
total transmission is therefore given by the sum of all these
contributions. This produces a time spread of the initial
pulse, which depends on the diffusion constant. The behavior
at long time is dominated by the least decaying exponential,
giving the time tail decay rate 7,= 7D/ (L+2,1+2,,).

IV. STATIC MEASUREMENTS

Figure 7 schematically sketches the set up used to per-
form static measurements: an integrating sphere that consists
of a hollow cavity with its interior coated for high diffuse
reflectance. Photonic glasses slabs with different thicknesses
are placed on the integrating sphere entrance hole. White
light from a tungsten lamp is sent into the sample. The inte-
grating sphere placed after the sample collects all the light
exiting at all angles, and sends it to a fiber coupled miniature
spectrometer that allows resolving the various spectral con-
tributions with a sub-nm resolution. The sample is optically
very thick; therefore, ballistic or unscattered light propagat-
ing through it is exponentially attenuated. We can therefore
assume that only diffusive light comes out at any angle from
the sample and enters the integrating sphere. Figure 8 shows
a direct measurement of the total diffused light transmission
through different photonic glass slabs (thickness L
~ 100 wm) upon white light illumination in the range
500-920 nm. In order to be able to compare the optical re-
sponse of different sphere sizes (790, 930, 1000, and
1220 nm), we plot the measurements as a function of re-
duced units (dn/\), where n is the refractive index.

Oscillations in transmission and its spectral dependence
are due to the existence of modes for the electromagnetic
field in the spheres. The spectral positions of these Mie
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FIG. 8. Normalized total transmission of white light through
photonic glasses as a function of the reduced parameter dn/A\.
Samples are composed by spheres with four different diameters,
and thickness is about 100 wm in all cases.

modes depend exclusively on sphere diameter, d, and on its
refractive index, n. These electromagnetic modes are excited
when the electromagnetic field wavelength is comparable
with the optical diameter of the spheres.

Figure 8 shows clear and simple evidence of the resonant
behavior of light transport in a broad energy interval. In or-
der to demonstrate this fact and also to clarify the conditions
under which the modes can be collectively excited, we com-
pared the resonant behavior of these four different sphere
sizes with two different no-resonant dielectric random sys-
tems. Figure 9 plots the total transmission through two ref-
erence samples that, for two different reasons, do not exhibit
resonant behavior. As Fig. 9 points out, there is no trace of
resonances in the transport of light for these two reference
systems. The first one (dashed curve) is a photonic glass
composed by PS spheres with a diameter of 200 nm. The
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FIG. 9. Total transmission of white light through two different
reference samples as a function of the reduced parameter dn/\. The
dashed line represents total transmission through a photonic glass
made of PS spheres of d=200 nm. Solid line represents total trans-
mission through polydisperse TiO, of averaged d=850 nm (SEM
inset of the sample where the scale bar represents 200 nm). Both
present nonresonant light transmission.
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FIG. 10. Inverse of total light transmission of white light
through photonic glasses made of PS spheres with d=1220 nm as a
function of wavelength. (a) For low values of L (€,>L). In this
case, thicknesses vary from 50 to 250 um. (b) For high values of L
(€,<L), up to 1600 wm, transmission shows a linear dependence
on thickness except for those wavelengths where absorption is not
negligible. Three particular wavelengths are marked with a triangle
(A=744 nm), a square (\,=828 nm), and a circle (A;=875 nm).

small size of the spheres compared to the light wavelength
illumination (dn/\) ~ 0.4 does not allow them to sustain Mie
modes in the wavelength range where the measurements are
performed. Therefore, those spheres behave, upon this par-
ticular light energy illumination, as pointlike scatters giving
rise to Rayleigh scattering (where scatter structure is negli-
gible) instead of Mie scattering (where resonances can be
sustained). Resonances are expected in other energy ranges
(in the uv) for this particular system. The second one (solid
curve) is composed of TiO, nonspherical powders with a
polydispersity about 36% (see the inset of Fig. 9) and a mean
diameter of about 850 nm. A different situation comes with
the nonresonant light transport through TiO, powder. In this
case, TiO, particles are large enough (dn/\~2.5) to sustain
Mie modes in this wavelength interval. However, Fig. 9
shows no trace of oscillations in the light transport because
resonances are smoothed out by polydispersity and the arbi-
trary nonspherical shape of the scatters. As previously re-
marked, Mie modes are morphologically defined by the ge-
ometry of the scatterer. When the scatterers are nonspherical
and also polydisperse, as in the TiO, case, each building
block sustains resonances for different wavelengths. This
smooths out the collective response giving rise to an overall
nonresonant behavior.

A. Resonant mean free path

In order to completely characterize these systems, total
transmission, 7(L,\), was measured as a function of the slab
thickness (L, from 50 to 1600 um) for a fixed sphere diam-
eter (d=1220 nm) and at extended wavelength range (500
<A <920 nm), which T(L,\)! is shown in Fig. 10. From
the experiments, it is possible to fit the values of €,(\), the
transport mean free path, and €,(\), the absorption length.
When light propagates diffusively and in the absence of ab-

PHYSICAL REVIEW A 78, 023823 (2008)

40
A A=T744 nm a

0o A=828nm
O A=875nm

N
o
1

0 — T T T T T T T
0 50 100 150 200 250

1 24 A=744nm
800 O A=828nm
1 0 A=875nm

1/ Transmission (arb.units)

— T T T T T T
0 300 600 900 1200 1500 1800

Thickness (um)

FIG. 11. Plot of 77! as a function of the thickness for three
different wavelengths. (a) For low L({,> L), linear dependence is
clearly shown for N=744, 828 and 875 nm as an indication of the
validity of the Ohm’s law for this wavelengths which present, how-
ever, different slopes. (b) For high L (£,<L), exponential behavior
is revealed for A=875 nm related to a water absorption.

sorption (€,> L), the function 1/7T(L,\) is directly propor-
tional to the slab thickness, L [Fig. 11(a)]. From this set of
samples, represented in Fig. 10(a), we can obtain ¢,(\) by
fitting the experimental results with the stationary solution of
the diffusion Eq. (4). Figure 12 shows this fit for the ex-
tended wavelength range. It reveals a clear resonant behavior
of €,(\). In the curve, a triangle and a square mark the spec-
tral positions of a minimum and a maximum of €,(\), respec-
tively.

The scattering cross section is enhanced when a Mie
mode is excited in a sphere. The scattering is more efficient
at those wavelengths and, therefore, the transport mean free
path becomes minimum.

B. Absorption

Absorption provokes an exponential dependence of
1/T(L,\) on the slab thickness [pointed out in Fig. 10(b)]
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FIG. 12. (Color online) Experimental transport mean free path
in a photonic glass made of PS spheres of d=1220 nm. The data are
obtained by fitting experimental T~ curves. Two particular wave-
lengths are marked with a triangle (\;=744 nm), a square (A,
=828 nm).
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FIG. 13. Total white light transmission through photonic glasses
composed by PS spheres with 200 nm (straight line), 1000 nm
(dashed-dot line) and 1200 nm (dashed line) as a function of wave-
length. All the spectra present a peak absorption at A=875 nm
(marked with a circle) related to water.

and must be carefully characterized. Figure 11(b) plots the
value of 1/T(L,\) as a function of slab thickness (L) at three
particular wavelengths, which have been previously marked
in Fig. 10 with a triangle (\;=744 nm), a square (\,
=828 nm), and a circle (\3;=875 nm). In the first and second
cases, \;=744 nm and \,=828 nm, the function 1/7(L,\)
presents a linear dependence on L, while in the third case,
N3=875 nm, it presents an exponential dependence.

Wavelengths \; and N, correspond to a minimum and a
maximum of a Mie resonance, respectively. The different
slopes agree with the photonic Ohm’s law with negligible
absorption [€,(\|,\,;) > L] and different €,. Contrary to these
cases and when L is large enough, a clear absorption peak is
revealed at wavelength A\;. This can be easily seen in Fig.
10(b) and is made more apparent in Fig. 11(b), where the
function 1/T(L,\) presents a clear exponential dependence
on L.

In order to clarify and distinguish Mie resonances from
absorption peaks, the same transmission experiments have
been performed for different sphere diameters. Figure 13
shows the total light transmission through three particular
photonic glass slabs composed of different sphere sizes with
diameters 200, 1000, and 1200 nm, respectively. These slabs
are thick enough to present the peak absorption at A3
=875 nm. Therefore, €,(875 nm) <L in all these cases. This
peak is independent of the sphere diameter and, for this rea-
son, it cannot originate from a Mie resonance, which only
depends on the geometric parameters of the scatterers. In
addition, as a photonic glass slab composed of spheres with
d=200 nm cannot sustain collective Mie resonances, we de-
duce, that the peak must be due to a discrete absorption. We
show that, for certain wavelengths, the system presents dis-
crete absorptions that are revealed in optical spectroscopic
measurements only when €, <<L. At this point, it is necessary
to estimate the value of this diffusive length in the energy
range at which experiments have been performed. Figure 14
shows the diffusive absorption length, €,(\), obtained by fit-
ting the experimental curve of the function 1/T(L,\) with
the corresponding Eq. (4). Valuable information is revealed
in this plot: (i) the mean value of the absorption length (€,) is
about 1 mm; (i) two dips at wavelengths \=730 and
875 nm appear in the function €,(\), for which €, presents
values about 900 and 500 wm, respectively, and, conse-
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FIG. 14. Plot of the absorption length, €,, from a photonic glass
made of PS with d=1220 nm. It shows clearly two absorption peaks
at A=875 nm, A=730 nm related to liquid water absorptions.

quently, absorption is maximum; (iii) an uv absorption tail is
pointed out at higher energies (lower wavelengths), where ¢,
presents a continuous decay. The exponential dependence of
the function 1/T(L,\) on L at high energies is related to uv
PS absorption [29].

At lower energies, the material that composed the spheres
(PS) has no absorption [29]. According to this, we attribute
the peaks at A=730 and 875 nm to near-infrared states of
residual liquid water in the sample due to overtones and
combination bands of fundamental vibrations occurring in
the midinfrared [30]. To rule out other possible effects of the
salt used to destabilize the colloidal suspension, we have
grown different photonic glasses varying the growth condi-
tions. As mentioned in the preceding section, an extra
amount of charge is enough to attenuate the electrostatic po-
tential into a total attractive potential. This extra amount of
charge can be obtained by adding salts (ionic or covalent) or
acids as both, when in dissolution, dissociate producing ions
or electrolytes. To verify that no discrete absorption peaks
were due to salt, we have grown photonic glasses with dif-
ferent kinds of salts (CaCl,, NaCl, K,CO;, MgSO,, and
Na,COs3) and also with acid (HCI). Their optical response is
always the same and shows the same absorption peaks,
which, therefore, cannot be due to the salt nor PS.

A short comment about absorption in photonic glasses
compared to other photonic systems is needed. As previously
settled, light transport through highly disordered materials is
diffusive in opposition to ballistic or unscattered transport
through nondiffusive materials. Although absorption disturbs
the optical properties of all photonic systems, its effects are
more evident in diffusive materials. Opal-based photonic
crystal is a paradigmatic system where light transport is, in
principle, ballistic in spite of being grown with the same
building blocks as a photonic glass. Absorption effects that
can be neglected or unobservable, for example in a photonic
crystal, should be taken into account and carefully character-
ized in photonic glasses. This fact is explained attending to
the different light transport properties that take place in each
one. In a diffusive material, the characteristic absorption
length is €,, whereas in a nondiffusive material absorption is
characterized with the length €;, which is the distance that
light travels before being attenuated a factor e. According to
Eq. (2), ¢; is always longer than €, and, therefore, light
should propagate a much longer ballistic distance in photonic
crystal to become attenuated with the same factor as in a
photonic glass.

We can do an estimation of the main values of both €, and
€,, and also the main value of ¢;. At the wavelengths for
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FIG. 15. Experimental set up to perform dynamical measure-
ments. A ultrashort laser pulse is sent to the sample. A spectrometer
collects the pulse temporally spreaded by the sample and sends it to
a streak camera.

which peak absorptions have been observed, a value of €,
~800 um gives rise to €;~0.7 m (with a value of ¢,
~3 um). It is remarkable the big difference (three orders of
magnitude) between the absorption length (€;) and the diffu-
sive absorption length (€,). This fact suggests that, to ob-
serve the same absorption effects in a pass-band photonic
crystal, it should be necessary to build a photonic crystal
1000 times thicker than a photonic glass, that is, 1 m thicker.

V. DYNAMIC MEASUREMENTS

Once the static photonic properties of photonic glasses
have been examined, we are interested in the dynamic trans-
port parameters. In the experimental setup to perform a time-
resolved measurement (schematically shown in Fig. 15), we
use a streak camera that permits us to monitor the time evo-
lution of a very short laser pulse in its propagation through
the glass. In particular, we have performed the experiment
with 2 ps pulses provided by a Ti:Al,O5 laser tuneable
within 700—920 nm. An example of a time-resolved trans-
mission measurement is plotted in Fig. 16 for two different
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FIG. 16. (Color online) Time-resolved transmission measure-
ments at =744 and 828 nm where the different slope of T(z) gives
rise to a minimum [D(744)=166 m?/s] and a maximum [D(828)
=205 m?/s] in the diffusion constant. In this case, L=1120 um.
(Straight lines represent the fit of the experimental measurements
with the diffusion equation.)
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FIG. 17. (Color online) Experimental diffusion constant in a
photonic glass made of PS spheres with d=1220 nm obtained by
fitting experimental 7(¢) curves. Two particular wavelengths are
marked with a triangle (\;=744 nm) and a square (A\,=828 nm).

wavelengths, A;=744 nm and \,=828 nm, which corre-
spond to the minimum and the maximum of a Mie resonance
analyzed in the preceding section. The different slope of
T(z,\) at long times (the time decay) at these two different
wavelengths accounts for the presence of a Mie resonance.
The thickness of the photonic glasses used in these time-
resolved experiments is about 1 mm. Figure 17 evidences the
resonant behavior of D(\). Its value has been obtained fitting
the experimental time profile of T(z,\) with the dynamical
solution of the diffusion equation (5). The solution to the
diffusion equation, with appropriate boundary conditions, fits
well the experimental data. The value of €,(\) has been ob-
tained independently from static measurements, using Ohm’s
law, and can be introduced in the equation as a known pa-
rameter.

This provides an accurate estimation of the value of D(N).
Absorption accounts for a correction of only a few %, on
average, but is crucial on the absorption peak (at N=875).
We can conclude that the resonant behavior of D(\) is due to
Mie modes and presents maxima and minima at the same
spectral positions as in the static measurements of €,(\).

VI. DISCUSSION

The appropriate velocity that describes light diffusive
transport in photonic glasses is the energy velocity. A discus-
sion about the possible resonant behavior of this magnitude
can be found in the literature [9,31,32]. Figure 18 represents
the energy velocity, v, obtained from independent measure-
ments of €,(\) (static) and D(\) (dynamic) with the help of
the expression

'DI%UE&. (8)

The experimental value is below the average value of the
group velocity obtained from the sample average refractive
index v,=c/(n)~0.77c while showing clear resonances.
Qualitatively, the minima of €,(\), for which the scattering
strength is maximum, correspond to wavelengths that excite
a Mie mode, and therefore experience a longer dwell time.
This turns into a minimum transport velocity (Fig. 18). For
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FIG. 18. Experimental values of the energy velocity as a func-
tion of the wavelength for a photonic glass made of PS sphere with
diameter d=1220 nm and for TiO, powder. For the photonic glass,
a full oscillation of around 5% amplitude is shown. The averaged
medium group velocity is 0.77¢. For the TiO, powder, flat velocity
dispersion is shown, obtained with the same procedure (note the
different scales on the y axis).

comparison, we show at the bottom of Fig. 18 the lack of
velocity dispersion of a TiO, powder sample measured in the
same experimental conditions. For ideal microspheres, the
single-particle resonances are 10-20 % wide in wavelength,
and therefore they are expected to be washed out for ff
>5-10 % (see the lower curve in Fig. 18). Recently, Sto-
erzer et al. [11] reported a wavelength-dependent diffusion
constant in 15-20 % polydisperse, irregularly shaped titania
powders, which in light of our findings is unlikely to be the
result of Mie resonances. The importance of the morphology
of the sphere is evident, as a broad size distribution or a
random shape of the dielectric resonator are expected to
wash out the resonant properties [33,34].

Figure 19 shows the comparison between the experimen-
tal and theoretical plots of €,(\) obtained by analytically
solving the Mie modes in a single dielectric sphere. This
theory can be rigorously applied to the single scattering re-
gime or, in the case of diluted systems, to independent scat-
tering events. The partial disagreement between experimen-
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FIG. 19. Plot of the transport mean free path: experimental
(stars), theoretical prediction of single-sphere Mie theory [9] for
ideal spheres (straight line).
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tal and theoretical data comes from the fact that our system
cannot be considered diluted with a filling fraction of 0.55.
When the scatterer density is very low, a multiple scattering
theory with a single scatter z-matrix appropriates [10]. This
holds roughly until the optical (and not physical) sizes of the
scatterers start to overlap. Then, the modes start to interact
and should affect the scattering matrix of the sphere. Finally,
it is expected that the resonances will disappear when the
scatterers occupy a volume fraction of 100%. The coherent-
potential approximation [32], which is a mean-field theory
and a first order in scattering density, predicts that the scat-
tering resonances weaken at high ffs and even disappear for
ff ~50-60 %. Nevertheless, at a filling fraction as high as
0.55, it is still possible to experimentally resolve the effect of
Mie resonances in the transport mean free path and transport
velocity, as we show. It is interesting to look further into the
physics involved in the resonant behavior at intermediate
filling fractions. When optimizing light diffusion, one often
wants to increase the refractive index contrast and to maxi-
mize the scatterers density in order to minimize the scatter-
ing mean free path. The price to be paid when increasing the
ff is to induce both correlations in the scatterers’ relative
positions (in the close-packing limit, only the crystalline fcc
lattice is allowed) and interaction between the Mie modes
inside scatterers. As long as the suspensions are dilute, the
scatterers can be considered independent and intraparticle
scattering [represented by the form factor F(g)] is sufficient
to describe the system.

If the concentration increases, however, in addition to in-
traparticle scattering, interparticle scattering [represented by
the structure factor S(g)] must be taken into consideration.
The relation between transport mean free path and the mi-
croscopic scattering properties is given by [27,35]

1 2k

.= k—z pF(9)S(q)q’dq, 9)
t 0

where p is the number density and ¢ the single-scattering
wave vector. One can work with a modified structure factor,
S(g), in order to fit the data [36] or confront a new calcula-
tion of F(g) taking into account the possible interactions be-
tween the modes of a sphere and near neighbors.

Figure 20 shows the comparison between experiment,
single sphere theory, and the calculation of S(g) obtained in
the Percus-Yevick approximation for hard spheres [37]. It
evidences how S(g) alone cannot account for the resonances
that appear in the transmission spectrum. A solution to this
problem is, in our opinion, a multiple scattering theory with
a modified single scatterer F(g) that takes into account the
possible interactions with nearest neighbors. Effectively, the
point is to calculate an adequate F(g) that accounts accu-
rately for the strength of the resonances. Finally, polydisper-
sity and refractive index contrast of the structure are impor-
tant in determining the visibility of the resonances. Figure 21
shows the plot of ¢, simulated for four different values of
sphere polydispersity and two different values of sphere re-
fractive index corresponding to PS and silicon. It shows how,
increasing the polydispersity, the resonances are washed out.
Even in the case of a high refractive index contrast, a poly-
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FIG. 20. Experimental (stars) and theoretical (straight line)
transmission from a PG with spheres d=550 nm. The dotted line
shows the calculated structure factor S(g).

dispersity of 5% is enough to smooth all the main spectral
features. This theoretical prediction agrees with our measure-
ments, which show how a high polydispersity gives rise to
nonresonant light transport (Fig. 9) even in the case of high
refractive index contrast, as in the case of TiO,.

VII. CONCLUSIONS

In conclusion, we present an ample optical characteriza-
tion of photonic glasses. With independent experiments
(static and dynamic), we observe resonant behavior in dif-
fuse light transport: resonant transport mean free path, diffu-
sion constant, and energy velocity. This observation opens
new and encouraging routes in the field of light transport
through disorder media as photonic glasses can be powerful
systems to be used as a new playground for light diffusion.
This novel material joins light dispersion and diffusion in the
same system, a combination that can be crucial to control the
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FIG. 21. Analytical calculations of the transport mean free path
for four values of sphere polidispersity, p, and for two different
values of sphere refractive index. Sphere diameters are 1 um and
ff=0.5.

diffuse flow of light in analogy to what photonic crystals do
for ballistic light. For example, phenomena such as Anderson
localization of light or random lasing in combination with
resonances in ¢,(\) acquire promising possibilities in this
novel framework. Photonic glasses by themselves and inte-
grated with photonic crystals may give rise to new applica-
tions in future photonic devices.
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