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Abstract. The well-known concept of semiconductor Bloch equations is extended to include
the spin degree of freedom in a six-level system comprising the spin-split conduction, heavy-
and light-hole bands (or corresponding lowest subbands in quantum wells). These equations
represent the frame to describe the response of semiconductors (bulk or quantum wells) under
near band gap optical excitation with arbitrary polarization including effects of spin relaxation.
We discuss selected examples.

PACS numbers: 78.20.-e: Optical properties of bulk materials and thin films, 42.65.-k:
Nonlinear optics, 78.67.-n: Optical properties of nanoscale materials and structures.

1. Introduction

Semiconductor Bloch equations (SBE) represent the basic concept to describe a
semiconductor under near band gap excitation by an intense light source.[1, 2] SBE are a
set of coupled equations of motion (e.0.m.) for the components of the density matrix for a
two-level system driven by the electric field of the exciting light which include the interaction
between the photo-generated carriers (electrons and holes). The single-particle part of these
equations refers to a pair of conduction and valence band states at fixed k. The interaction
renormalizes the single-particle energies and the coupling to the light field but couples also the
two-level systems for different k thus giving rise to inhomogeneous broadening. Relaxation
due to scattering with impurities and phonons can be included by adding phenomenological
damping terms. SBE can be considered under different assumptions [2] which allow to
describe (i) coherent (e.g. Rabi oscillations, photon echo) or (ii) quasi-equilibrium phenomena
(e.g. luminescence) in their characteristic time domains: the interband polarization -
initially coherent with the exciting electromagnetic field - decays by transverse relaxation
due to carrier-carrier interaction and the system evolves into quasi-equilibrium populations
of electrons and holes, which decrease by radiative (or non-radiative) processes (longitudinal
relaxation). Under low-excitation conditions the SBE can be reduced to the inhomogeneous
Schrddinger equation for the Wannier-Mott exciton. The strength of the SBE concept has
been demonstrated in numerous fundamental investigations and applications, among which
semiconductor microcavities and lasers represent prominent examples.|[3]

In spite of their great success, the original two-level SBE were not designed to account
for the degrees of freedom connected with the carrier spin or with the transversality of the
exciting light. Both aspects have recently attracted increasing attention: (1) Optical excitation
with circular polarization is used to generate spin-polarized carrier populations (optical spin
alignment) and to investigate their dynamics.[4] (2) The polarization instability of vertical
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cavity surface emitting lasers (VCSEL) has been ascribed to coupling between two-level
systems (active under left and right circularly polarized light) by spin-relaxation processes.[5]
(3) The helicity of light can be converted into a stationary current (circular photogalvanic
effect, CPGE [6]) in systems lacking inversion symmetry, connected with removed spin-
degeneracy of the single-particle states. (4) The nonlinear absorption (proportional to the
PGE signal) is different for linear and circular polarized excitation, thus allowing to measure
spin relaxation times.[7] (5) The mechanisms of spin relaxation, known from intensive studies
for semiconductor bulk material [8], are essentially the same for semiconductor quantum
wells.[9] The dominant ones for most semiconductor structures under investigation are the
D’yakonov-Perel” (DP) mechanism, related to the spin-splitting of the single-particle states,
and the Bir-Aronov-Pikus (BAP) mechanism, caused by electron-hole exchange processes.
Spin relaxation is described by e.o.m. for the spin-density matrix, formulated so far only for
the electron system.[8, 10]

Here we present an extension of the SBE which includes the spin and polarization degrees
of freedom and represents the theoretical frame for all these and related phenomena.

2. Coherent SBE for the two-level system

The SBE originally formulated by Koch and Lindberg [1] for the two-level system, a
conduction and a valence band level at the same wave vector k, driven by a scalar
electric field E(t), have been derived from the e.o.m. for the two-fermion operators
c'(k,t)e(k,t),v(k, t)vf(k, t), and v (k, t)cf (k, t) whose thermal expectation values form the
2 x 2 density matrix

¢(k,t) Pkt
() ®

with the population functions p¢(k,t)(p"(k,t)) for electrons (holes) and the interband
polarization function P(k,t). The coupled equations of motion for these quantities result
from applying the HF truncation, by which four-operator terms appearing in the e.o.m. are
replaced by products of thermal expectation values of two-fermion operators (a more complete
treatment employs the dynamically controlled truncation [11]). By considering only terms
diagonal in the wave vector, thus leaving out collision terms due to carrier-carrier scattering,
one arrives at the coherent part of these equations which read [1]

ihopt(k, t) = —2iIm(Q(k, t) P*(k, t)) = ihd,p" (k, ) )
ihd,P(k,t) = (°(k) — £"(k)) P(k,t) — (1 - p(k, 1) — p"(k, 1))k, 1), (3)
but they can also be written using the commutator [A, B] = AB — B A (dependence on k and

t understood)
] pe P B 56 —Q pe P
Zhat<P* 1_ph>_[<_9* 6u>a<P* 1_ph>] (4)

Here ¢*(k) = ¢§(k) + X%(k)(« = ¢, v) are the single-particle energies with self-energy
corrections

2ok, t) = = > V(|a])p™"(k — q,1) (5)

due to carrier-carrier interaction (V'(¢) is the interaction potential) and

Ak, t) =dg, E(t) + > V(k —al)P(q,t) (6)
q7k
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the renormalized interaction with the light field (d., is the dipole matrixelement between
valence and conduction band). The second term of Eq. 6 is due to the optically generated
electron-hole pairs and expresses together with the self-energy corrections the many-body
character of the problem. Without these terms Egs. 2 and 3 reduce (in the rotating
wave approximation) to the coherent optical Bloch equations which are frequently used by
including phenomenological damping terms characterized by the longitudinal relaxation time
T (for the decay of population inversion) and the transverse relaxation time 7% (for the
dephasing or decay of coherence).[2]

Equations 2 and 3 do not account for the realistic electronic structure at the band edges
of semiconductors with degeneracy due to spin and angular momentum. The removal of
these degeneracies by spin-orbit interaction, which at finite wave vector k can give rise to
k linear terms in the dispersion of conduction and valence bands (or subbands in quantum
well structures) is connected with the DP spin relaxation. In addition the two-level system
coupled to the scalar field E(¢) does not allow to account for the possible different transverse
polarizations of the exciting light in a real system.

3. Extension to the six-level system

To overcome these limitations the two-level system has been replaced by the more realistic
multi-band model.[12] We consider here for simplicity a six-level model comprising for each
wave vector k the lowest conduction band (¢, m. = +1/2) and the topmost valence band
(v,m, = £3/2, £1/2), where the quantum numbers m, refer to the angular momentum
representation of the band edge states with k = 0. For finite k the states are mixed due
to k - p interaction. The six-level model is applicable to bulk as well as to quantum wells
and includes in the latter case the lowest electron, heavy- and light-hole subbands (each
twofold due to spin). The density matrix for this system consists of diagonal 2 x 2 and
4 x 4 blocks for the electrons p¢(k,t) and holes p"(k,t), respectively, and a 2 x 4 off-
diagonal block (and its hermitian conjugate) for the interband polarization P(k,¢). This
structure of the density matrix corresponds to that assumed for the system Hamiltonian:
2 x 2 and 4 x 4 diagonal blocks H¢(k) and H(k) for the conduction and valence band
states, respectively, due to block diagonalization with respect to interband k - p coupling. We
may split H*(k) = H§ (k) + X“(k) into independent-particle part H (k) and self-energy
correction 3¢ (k) as for the two-level system. Dipole selection rules determine the coupling
2 between valence and conduction band states with the electric field

E(t) = E(w)e™" + E*(w)e™ ™" (7
with E*(w) = E(—w) to make E(¢) real. For light propagating along z the two independent
transverse polarizations are obtained for E* (w) = Ey(e, + e,e**)/2 where + indicates the
helicity of light which for ¢ = /2 corresponds to right and left circular polarization. Instead
of d., we have a 2 x 4 matrix d,,_,,, for the vector of the dipole operator and for k = 0 an
unrenormalized interaction matrix E(w) + dy,m, (R = dey /V/2):

me = +5 | —HE (1 +ie*?) 0 Bt (1 — ietiv) 0
m, = —1 0 s (i) 0 o Ui
my= | 2 2 3 3

The obvious compact form of the e.o.m. for the density matrix of the six-level system is
that of Eq. 4 but with the scalar quantities replaced by the corresponding matrices:

e S )G w) (5050 )) o
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In order to identify the individual terms, in particular the expressions for the self-energy and
the renormalized interaction matrix €2, one has to go through the lengthy algebra of deriving
the e.o.m. of the two-fermion operators as for the two-level system and to apply the HF
truncation scheme. This has been done in the past and the resulting generalizations of Egs. 2
and 3 can be found in the literature.[12] The present investigation, however, is an extension
by including spin-splitting of the (sub)bands and electron-hole exchange interaction.[13]

As mentioned already, spin-splitting of the electron or hole (sub)bands is a prerequisite
for the DP mechanism of spin-relaxation. Therefore, H{ (k) should contain besides the
bilinear terms in the components of the wave vector also odd-power terms which arise from
k - p decoupling in systems (bulk or QW) without inversion symmetry. Thus, in the basis of
eigenstates of H (k) the independent-particle energies ¢;, (k) can depend on the angular (or
spin) quantum number m, and, as a consequence, one finds e.g.

[HI5 (), 9" (1)), = (56 m (6) = 6, (K)) m, (). ©)
Note, that this commutator appears in the e.o.m. for the spin-density matrix of electrons for
the DP spin relaxation.[8, 10, 18]
In the present context the Coulomb interaction (x refers to space and spin coordinates)

Heou = ; [ dx [ dx' Wi )V (r - 1)) U (x) (10)

is formulated by expanding the field operators \I/(x) in a series of electron and hole single-
particle functions (time-inverted electron functions ¢ are used for holes)

= Z Cm, (k7 t)wcmck(x) + Z anv (k, t)'ﬁ/;vmvk(x) (11)

the expansion coefficients being fermion operators for electrons and holes. H¢,,,; falls into
four different contributions (e-g, h-h, direct e-h, and e-h exchange) of which the e-h exchange
term reads

Hi= 3 Vo (6K, ael, (S o+ o (K + Q)vhy, (), (K) (12)

mcm

My My, k’

with
fnhc’%v k k',q /dX/dX ow k+q )wvmvk’(xl)

V(Ir = r')Vem; w0 a(X) Pomy k(%) - (13)
It is characteristic for the e-h exchange term that the integration is over products of electron
and hole wave functions at different k. Their periodic parts can be Fourier expanded with
plane waves of the reciprocal lattice vectors G. As it turns out there is no contribution for
G = 0 (because of the orthogonality of the periodic parts of Bloch functions at the same
k) and, therefore, e-h exchange terms are usually not considered in the context of SBE
(an exception is Ref. [17]). On the other hand e-h exchange manifests itself in the exciton
finestructure in bulk [14, 15] and quantum well systems [16] and is also responsible for
(exciton) spin relaxation (BAP mechanism) [9, 10]. In our extension of the SBE for the six-
level system we take e-h exchange into account and discuss its consequences with respect to
spin relaxation. In this contribution we do so by taking the electron self-energy as an example
and refer for a more detailed presentation to [13].

The electron self-energy takes the form

Efn ml, (k Z { Z m’ mcmcm’ k - q, k7 Q)P?ncmg (k - CI)

M),

Z Vef];’l\mvmc (_k + q, _k + q, q)p?n;mv (k B q)} ’ (14)

mym),
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where the first term derives from the e-e interaction while the second term is due to the e-
h exchange interaction. The interaction matrixelements of the Coulomb interaction V¢ are
modified due to the k - p mixing of the single-particle wave functions but reduce without
this mixing according to V5 s s (k — a,k,a) — V(|q|)dmem:Om.m. and we recover
the self-energy of Eq. 5 for the two-level system. The second term, due to e-h exchange
interaction, contributes only for finite hole population p”, as is typical for the BAP spin
relaxation mechanism. In general, the off-diagonal terms of X7, . (k) describe spin-flip

processes which can be due to band-mixing or e-h exchange interaction.

4. Special casesand discussion

Let us consider now the special case of two two-level systems, consisting of electron
(m. = £1/2, here abbreviated as +1) and heavy-hole states (m, = +3/2, here abbreviated
as +3), under excitation with circularly polarized light. For this system (including cavity
effects) San Miguel et al. [5] formulated the Maxwell-Bloch equations in order to study the
polarization instability of VCSEL. These equations (except for cavity effects) can be obtained
from our six-level SBE by neglecting the light hole states, using the nonvanishing interaction
terms €213 for circularly polarized light, and adding phenomenological damping terms. The
e.o.m. for the population inversion D = £{p%, + p=,_; — (2 — pli3 — p"5_3)} and for the spin
polarization d = £{p¢, + plis — p2,_, — p"5_;} take the forms

1 2

I
and
1 2 . "
d= — —d+ -Im(Qu3 Py — Q_1_3P*,_3)
7)| h
i EC e e EC __h EU EU h 16
+ i 1-1P_11 — P1o1211 — P3_323-3 T 2L33P 33) . (16)

The last term in Eq. 16, consisting of products of off-diagonal terms of the electron and hole
spin-density matrices and self energies, is a contribution to the decay of the spin polarization
d. In fact, when identifying this term as —2d /7, with a spin-relaxation time 7, one recovers
the corresponding phenomenological e.o.m. of Ref. [5].

Spin relaxation of electrons due to spin-splitting caused by spin-orbit coupling combined
with momentum scattering (DP mechanism) is described usually starting from an equation of
motion for the electron spin-density matrix p°(k, ¢).[8, 10] Such an equation is obtained from
Eq. 8 by considering only the 2 x 2 electron block and identifying the driving term Im(QP*)
as generation matrix G(k, ¢) (see also Ref. [18]):

0upf (k1) = £ H00) + 2519, (k. 1)

+ Z Wk, k) (p"(k, 1) — p°(K',1)) = G(k, 1), (17)

where we have added the last term on the I.h.s. to account for momentum scattering with
phonons and (nonmagnetic) impurities. Equation 17 is a generalized form of equations used
in the context of spin relaxation combining the single-particle spin-relaxation mechanism
due to spin-splitting (DP) considered in H(k) with the many-body mechanisms described
by the electron self energy X¢(k), in particular the one caused by the electron-hole
exchange interaction (BAP). To the best of our knowledge such a unified formulation of both
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mechanisms does not yet exist in the literature. A similar equation for the 4 x 4 hole-density
matrix p”(k, t) could be used to calculate the hole-spin relaxation.

The response of a semiconductor system under intense excitation can be described by
the thermal expectation value of the corresponding observable. Let us consider here as an
example the photogalvanic effects (PGE) [6, 7] which are detected as a stationary current due
to non-equilibrium populations of spin-split states under nonlinear excitations. This current
can be written as

j = eTr(pv) (18)

with the operators p and v of the density matrix and of the velocity, respectively. As discussed
in the literature the evaluation of Eq. 18 has to include the off-diagonal elements of p and v,
where the density matrix contains the nonlinear dependence on the electric field amplitude
of the exciting light. The theory developed here does not directly apply to the situation of
Ref. [6] with intersubband excitation by far-infrared laser light, but can be adapted to account
for this case. On the other hand investigations of the PGE with optical excitation (from valence
to conduction band states), to which the concept presented here applies, are conceivable. An
aspect of particular interest of PGE measurements is the dependence of the saturation behavior
on the light polarization, which provides as an alternative to time-resolved experiments the
possibility to detect the spin-relaxation time.[7] Future work has to show how this dichroism
of the PGE saturation can be described in the frame of the concept presented here.

Acknowledgments: The work was performed with support from the Ministerio de Educacion,
Cultura 'y Deporte (Premio ”A. von Humboldt - J.C. Mutis” 2000). Partial support came from
the Volkswagen foundation and the Deutsche Forschungsgemeinschaft (DFG, Forschergruppe
370 ”Ferromagnet-Halbleiter-Nanostrukturen™).

References

[1] Lindberg M and Koch S W 1988 Phys. Rev. B 38 3342

[2] Haug H and Koch S W 1993 Quantum Theory of the Optical and Electronic Properties of Semiconductors
World Scientific Singapore

[3] Khitrova G, Gibbs H M, Jahnke F, Kira M, and Koch S W 1999 Rev. Mod. Phys. 71 1591

[4] Damen T C, Vifia L, Cunningham J E, Shah J, and Sham L J 1991 Phys. Rev. Lett. 67 3432

[5] San Miguel M, Feng Q, and Moloney J V 1995 Phys. Rev. A 52 1728

[6] Ganichev S D, Ketterl H, Prettl W, Ivchenko E L, and Vorbjev L E 2000 Appl. Phys. Lett. 77 3146; Ganichev
S D, Ivchenko E L, Danilov S N, Eroms J, Wegscheider W, Weiss D, and Prettl W 2001 Phys. Rev. Lett.
86 4385

[7] Ganichev S D, Danilov S N, Bel’kov V'V, Ivchenko E L, Bichler M, Wegscheider W, Weiss D, and Prettl W
2002 Phys. Rev. Lett. 88 57401

[8] Pikus G E and Titkov A N 1984 in:Optical Orientation edited by Meier F, Zakharchenya B P Elsevier
Science Publ. Amsterdam

[9] Sham L J 1993 J. Phys.: Condens. Matter 5 A51

[10] Maialle M Z, de Andrada e Silva E A, and Sham L J 1993 Phys. Rev. B47 15776

[11] Axt V M and Stahl A 1994 Z. Phys. B 93 195 and 205; Lindberg M, Hu Y Z, Binder R, and Koch S W
Phys. Rev. B 50 18060

[12] Binder R and Koch S W 1995 Progr. Quantum Electron. 19 307; Binder R and Lindberg M 2000 Phys.
Rev. B61 2830

[13] Rdossler U (in preparation)

[14] Denisov M M and Makarov V P 1973 Phys. Sat. Sol. (b) 56 9

[15] Rossler U and Trebin H R 1981 Phys. Rev. B23 1961

[16] Jorda S, Rossler U, and Broido D 1993 Phys. Rev. B48 1669

[17] KuklinskiJ R and Mukamel S 1991 Phys. Rev. B44 11253

[18] Ivchenko E L and Pikus G 1995 Superlattices and other heterostructures. Symmetry and optical
phenomena, Springer Series in Solid State Sciences 110, Springer, Berlin





