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We have studied the spin dynamics of the polaritons in a GaAs/AlGaAs microcavity by means of
polarization- and time-resolved photoluminescence spectroscopy as a function of excitation density
and normal mode splitting. The experiments, performed under non-resonant excitation, revealed a
novel behaviour of the polarization degree of the emission, which reaches its maximum at a finite
time. We have also found that polariton stimulated emission takes place for excitation densities
larger than 20 W/cm?. This process has a strong influence on spin dynamics: the emission becomes
almost completely polarized and negative values of the polarization are observed, whose magni-
tude depends on exciton—cavity detuning.

Since the first experimental evidence of microcavity polaritons [1], the electronic prop-
erties of semiconductor microcavities have been intensively studied: polariton disper-
sion [2], relaxation [3] and bleaching [4] have been investigated. In the last years, non-
linear processes have attracted much attention. However, it has proven difficult to keep
polaritonic signatures due to strong exciton—cavity coupling saturation [5] (conventional
Vertical Cavity Surface Emitting Lasers (VCSELs) work in the weak coupling regime).
Only very recently, polaritonic stimulated emission has been reported both in III-V [6]
and II-VI [7] microcavities. In the majority of these studies the polariton spin (i.e. third
component of the total angular momentum) was not taken into account. There are only
a few reports on the spin properties of VCSELs [8]. Our work provides another experi-
mental evidence of polaritonic stimulated emission and evidences the important role
played by microcavities on spin properties.

The samples are grown by molecular beam epitaxy and include Aly3sGagesAs/AlAs
dielectric mirrors. Three pairs of GaAs coupled quantum wells (QWs) are placed in the
antinode positions of the 31/2 Aly,5Gag7sAs microcavity. A slight wedge in the cavity
thickness allows tuning the cavity resonance to the transition in the QWs by moving
the excitation spot across the sample. Temperature dependent cw-photoluminescence
(PL) experiments allow us to attribute an excitonic character to the low-energy-side
peak, and a photonic character to the high-energy-side one. Additional magneto-PL
experiments confirmed this assignment [9].

Our experiments are performed under non-resonant excitation, above the cavity stop
band, and the PL emitted by the sample is analysed in a conventional up-conversion
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spectrometer with a time resolution of ~2 ps. For polarization resolved measurements a
pair of 1/4 plates are included in the experiment. The samples are mounted in a cold
finger cryostat and a temperature of 5 K is kept constant through all the experiments.
We have studied the time evolution of both the PL and its polarization degree, as a
function of excitation density and exciton—cavity detuning.

For low excitation densities, we have found normal mode splitting variation between
3.5 and 7 meV probing different points on the sample. Our experiments reveal no influ-
ence of the exciton—cavity detuning on the PL characteristic rise and decay times, in
agreement with [10]. These characteristic times are similar for both polariton branches
and amount to X ~ 100 ps, 73 ~ 300 ps, 7{ ~ 70 ps and 7 ~ 250 ps, where X (y) and
r (d) denote exciton- (photon-)like and rise (decay) time, respectively.

Increasing excitation density leads to a strong modification of the light emission dy-
namics. Figure 1 depicts two time-resolved PL spectra taken 100 ps after excitation, for
small (filled circles, 9 W/cm?) and large (open circles, 25 W/cm?) excitation densities.
With increasing power, the linewidth of both polaritons is strongly reduced, specially
that of the lower polariton branch (LPB), which changes from 7 to 1.5 meV (the
change in the upper polariton branch (UPB) amounts only to 2 meV). The inset shows
the integrated emission of the LPB (on logarithmic scale) as a function of excitation
density: a large increase is seen for excitation densities larger than 20 W/cm?. This
threshold density increases with increasing normal mode splitting.

The time evolution is also drastically modified by excitation density, as demonstrated
in Fig. 2. Under small excitation densities (filled circles, 9 W/cm?) the time evolution is
similar to that typical of QWs under non-resonant excitation: the emission begins at
zero delay and is characterised by slow rise- and decay-times. For larger excitation den-
sities (open circles, 25 W/cm?) an onset of the PL at ~30 ps is observed, which is fol-
lowed by a very fast rise and decay. This finite time to obtain a noticeable PL is related
to the accumulation and relaxation of non-resonantly created excitons towards energies
where they can interact with the cavity. The curvature of the initial rise of the PL time
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LA B B Fig.2. Time evolution of the cavity
mode for excitation densities below
(9 W/cm?, @) and above (25 W/cm?, O)
the threshold for stimulated emission.
Inset: Energies of both polariton
branches as a function of time. The lines
are guides to the eye
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while the LPB is photon-like. The energy of the exciton-like polariton-mode decreases
with time, while that of the cavity-like remains constant. At long times, the LPB (UPB)
recovers its exciton- (photon-) like character. This, in addition to the linewidth reduc-
tion, the time evolution modification and the excitation density threshold, lead us to
identify the non-linear luminescence as polaritonic stimulated emission.

Let us now focus on the polariton spin dynamics. Under o* excitation, the PL polar-
ization degree p is defined as

1 — 17
NG )
where I°"" denotes the PL emitted with +1 helicity. An analysis of this magnitude
gives direct information about the spin relaxation, as it is directly related to the differ-
ence between +1 and —1 spin populations. A o* excitation pulse will mainly create +1
excitons and a —1 population will appear as a result of spin-flip processes [11].

Our experiments reveal that the time evolution of p in a microcavity is quite differ-
ent to that characteristic of isolated QWs. For bare excitons, p reaches its maximum
almost immediately after excitation and then decays exponentially to zero [12]. Under
far, non-resonant, excitation g should be small, because both kinds of excitons, +1, will
be created. However, we observe a maximum in p a few tenths of picoseconds after
excitation. Figure 3 shows several time evolutions of the polarization degree of the
cavity mode for two different exciton—cavity detunings and for excitation densities be-
low (filled circles) and above (open circles) the stimulated emission threshold. Let us
first concentrate on the behaviour of p at moderate excitation densities (Fig. 3, filled
circles). The initial value of p is only ~10% and then rises up to ~40% at 50 to 100 ps
after excitation. The time delay to reach the maximum increases with decreasing exci-
ton—cavity detuning. This maximum value increases strongly with excitation density,
reaching values as high as 70% before entering the stimulated emission regime. The
fact that a finite time is needed to reach pm.c implies that the interaction with the
cavity field favours +1 polaritons at the expense of the —1 population. This process
competes with spin relaxation, which tends to make both populations equal.
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Fig. 3. a) Time evolution of the polarization degree of the cavity mode for 16 (@) and 40 W/cm?
(0), in a point of the sample with a normal mode splitting of 4.5 meV. b) Time evolution of the
polarization degree of the cavity mode for 25 (@) and 45 W/cm? (0), for a normal mode splitting
of 6 meV

For excitation densities well above the threshold (Fig. 3, open circles) the dynamics
of p is even more conspicuous. The initial value of g is ~30% rising up to 95% at
~30 ps. This means that the initial +1 polariton population increases from 65% to
~97%. The UPB displays a similar behaviour but the effect is much smaller (p maxi-
mum is ~=60%). Although detuning does not affect the value of pmay, it drastically
modifies the temporal evolution of p after the maximum is reached. For small normal
mode splitting (Fig. 3a) a negative dip (—-60%) is observed at =150 ps, which is a con-
sequence of the fast emptying of the +1 polariton population due to the stimulated
emission process: the —1 spin population exceeds the +1 and negative values of p re-
sult. When this minimum is reached the stimulated emission process is over and the
majority —1 polaritons will “slowly” flip their spin, bringing g back to zero. Figure 3b
shows that there is no negative o for larger detuning, due to the modification of the
stimulated emission dynamics.

In summary, our study of polariton dynamics as a function of exciton—cavity detun-
ing and excitation density has revealed evidences of stimulated emission in micro-
cavities. The coexistence of the two polariton branches for all excitation densities de-
monstrates that stimulated emission is polaritonic and due to the lower polariton
branch. We have found a strong influence of exciton—cavity detuning on the spin re-
laxation of polaritons: the photoluminescence polarization degree reaches its maximum
at a finite time and, for small normal mode splitting, negative values of o appear.
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