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Polarized interacting exciton gas in quantum wells and bulk semiconductors
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We develop a theory to calculate exciton binding energies of both two- and three-dimensional spin polarized
exciton gases within a mean field approach. Our method allows the analysis of recent experiments showing the
importance of the polarization and intensity of the excitation light on the exciton luminescence of GaAs
quantum wells. We study the breaking of the spin degeneracy observed at high exciton dersi§%(5
cm?). Energy level splitting between spial and spin—1 is shown to be due to many-body interexcitonic
exchange while the spin relaxation time is controlled by intraexciton exchf80#63-182806)06224-9

l. INTRODUCTION equationt>?° The physics underlying the three approaches is

The optical response of intrinsic semiconductor hetero2 lways a mean field treatment of interaction betwsginless

. ) o excitons and so the equations obtained are analogous. The
structures has received considerable attention in recent Yealgterences lie in the obtaining of the equations and in the
from both the theoretical and the experimental point of view. hysical nature of the mathematical objects the theories are

The study of the Iumlnes_cence_z spectrum gives |r_1format|0 uilt upon. In any case, spin splitting is beyond the scope of
_about the Io_vvest ele_ctromc gxcneq state Qf a Sem'CO”dUCtofhosespinlessexcitons theories.
i.e., the exciton. Using polarized light, emitted photons con- e present in this paper a theory of spin-dependent
tain information on both exciton energies and their depengyxciton-exciton interaction in two and three dimensio2®
dence on the exciton spinTime resolved photolumines- and 3D. Such interaction produces a gas with a difference in
cence experimerts® provide information on different the spin populations, a level splitting. We concentrate on the
exciton properties: exciton formation and decay processespin and energy dynamics and their effect on the exciton
spin relaxation, binding energy evolution, etc. In some ofrecombination without paying attention to the exciton forma-
those experiments, performed in the picosecond rAfgen  tion. Our theory for spin polarized systems is an extension of
energy splitting between spift1 and spin—1 excitons has the exciton operator Hamiltonian approa¢tanamura-Haug
been reported. These studies show that the spin splitting irapproacf?). Our results for the 2D case are in agreement
creases with both the initial exciton density and the degree ofvith experiments in quantum weffs® Experimental work in
initial polarization. the interacting regime with polarized light remains to be
So far, theoretical models have been propé8ed ex-  done in bulk, to the best of our knowledge.
plain only the exciton spin relaxation without taking into  This paper is organized as follows. In Sec. Il we present
account the exciton-exciton interaction. The models give althe many-exciton Hamiltonidh from which we obtain
ternative explanations to spin relaxation processes in termmany-exciton Wannier equations including spin. In Sec. lll
of intraexcitonic exchang¥*? D’yakonov-Perel® and we solve them using both perturbative and variational ap-
Elliot-Yaffet'* mechanisms. However, these free-excitonproaches. The main approximation we make is to consider
models fail to describe the spin level splitting. the exciton center of mass at rest. Our calculations, correct
As far as many-exciton effects are concerned, only thaip to order fa%)?, give four exciton energies and wave
spinlesshigh density exciton gas has been the subject ofunctions as a function of density in two and three dimen-
theoretical research in the last 30 ye®s8 Three different  sions. The maximum density experimentally reached is about
schemes have been developed. The first one, proposed b@'! excitons cn 2. A reasonable estimate for the exciton
Keldysh® and generalized by Comte and Noziettss a  radius is 10 A . Whenn=10" cm~2 thenna is roughly
BCS-like approach. Another method, due to Hanamura an@d.1. This means we neglect 19 compared with 10
Haug?® consists in writing the Hamiltonian in terms of ex- Screening corrections to the energy within RPA are also
citon operators. When the center of mass momentum of eadlaken into account although they do not depend on the exci-
exciton is zero these two approaches are equivalent up tn spin. A rate equation is proposed and solved in Sec. IV in
order (na¥)?, wheren is the exciton densty is the exciton  order to obtain the time evolution of the different types of
radius ()%e/ue?, e being the electron chargg, the re-  excitons. Once we have the energies as a function of densi-
duced exciton mass, arndthe dielectric constant, andl is  ties and the densities as a function of time, we can get results
the dimension of the space. The last availaible theoreticadlirectly comparable with experiments obtaining a qualita-
scheme consists in writing a Bethe-Salpeter equation antively good agreement. Finally, Sec. V is devoted to the dis-
interpreting the homogeneous part as a multiexciton Wannietussion and summary of our main results.
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II. INTERACTING POLARIZED EXCITON GAS THEORY bital part, and the radial wave function. This factorization is

Dealing with exciton-exciton interaction is a complicated possible if we assume thdK,J,M, v} are good quantum

task. The exciton is a two-body excitation which is not, prop_nueretrs L%gehn;,;"zngter?ﬂngeegﬁgsv?'? that the exciton
erly speaking, a boson. Even the noninteracting excito% erFa)\tor Hamiltonian including the exciton exciton interac-
Green function is not simple to calcul#&2 Consider the oF g

. ; ion can written
exciton creation operator: tion can be written as

H=Ho+Hint, 2
lpﬁ:f dedhg;(e,h) gyl @ where

where the index is the set of exciton quantum numbers

{K,J3,M,2}, K being the center of mass momentudnthe Ho= 2 (i|Tet+ Tn—Verli Ve s ()
total angular momentumM its third component, ana la- ii

beling the internal state of the exciton] creates a conduc- and

tion band electron ire, wheree={r,s.}, and analagously

zpﬂ: for a hole for which we neglect valence band mixing 1

e_ffects. On thg other han@,i(e,r) is the exciton wave func- Him=§ > lﬂwi‘r, Gt (G 170

tion. So, physically speakingj; is an operator that creates il

an electron-hole cloud following the excitonic probability IRIRUINITALS) )
amplitude. The exciton wave function can be written as a o '

product of factors, namely, the center of mass term, the orwhere

(Tt Ty Venli’)= [ dedhyt (e, (Tet Ty Va1 (e.h),

(i,i’||d|i”,i”’)=J dedhdédh’ ¢ (e,h) ¢%(e',h")(Vee + Vi — Ver — Vhe') din(€,h) dim(e’,h'),

(i,i’||x|i”,i”’>:—J dedhdédh’ ¢ (e,h) ¢’ (€' ,h")(Vee +Vin — Ve — Vhe) din(e’,h) dim(e,h’). (5
|
It must be stressed that this Hamiltonian is correct up to o 1 o o
order (na%)2. This means that using this Hamiltonian we can <H>:Ei wi N+ EE (i [Tg+ 1 i",0)
(and we must neglect the contributions to the energy of b
order (na%)2. The physical origin ofly is the direct un- +(i7,i[1gF 1, ]iL,i7))nn; (6)

screened Coulomb interaction between fermions belongin%ith
to different excitons whild, is the interexcitonic exchange,
or the unscreened exchange interaction between fermions of
the same type. It is important to distingish between interex-
citonic exchange and intraexcitonic exchange. The former idNow, if we make a functional derivation without any further
as we stated before, a many exciton intrabé&mhduction- assumption about the single-exciton wave function, the
conduction or valence-valencexchange and the latter is a Euler-Lagrange equations we obtain are terribly
single exciton or interbanéconduction-valendeeffect® 't complicated:>!"**One of the complications is nonlocality,
The intraexcitonic exchange does not break the symmetr@nother is our lack of knowledge of,, the quantum non-
between spint+1 and spin—1 excitons and has a very weak equilibrium distributions. If we assumk =0, say, all the
influence in the exciton energy levélsn this paper we ne- excitons are at rest, nonlocality disappears, and instead of a
glect the intraexcitonic exchange in the calculation of theset of continuous functiona(K,J,M,») we have a set of
exciton binding-energy. Nevertheless, the intraexcitonic exdiscrete numbersi(J,M,v). This is the most drastic as-
change plays a very important role in the spin flip sumption we make. In the case of resonant excitation, the
mechanisnd:® K =0 hypothesis is more realistic than in the nonresonant
We use a mean field approximation. First, we calculateexcitation case because, in the resonant regime, the system
the expectation value of the Hamiltonian with a wave func-receives just the energy required to create the exciton with-
tion equal to the product of the noninteracting exciton waveout any kinetic energy. Experimental information is available
functions: both in the resonafit° and in the nonresonatregime. We

C”iO=<i|Te+Th_Vehli>- (7)
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consider only the resonant case, ite=0. A less drastic and would appear although the final results would remain quali-
more usual assumption is that all the excitons are in theitatively unaltered. Using E9), the only nonzero spin terms
ground stater=1. So, spinM is the only quantum number for the 2D case are

labeling our excitons. Since holes at the top of the valence

band have an angular momentum 3/2 and electrons a 1/2 one, Ap=I
excitons have angular momenta running from 2-8. Zero )
angular momentum does not play any role in the usual ex@S Well as the ones generated by the following symmetry
perimental configuration of light propagation along thePropertes:

growth axis in 2D systems. Hence, in order to describe the

system we have only to know four numbers, i.e., the exciton I
populations  which we denote by the array
n={n.,,n.1,n_1,n_p}={n,,ny,n;,n_,}. Another ap-
proximation implicit to the derivation of the Euler-Lagrange
equations is that for eaalthe energy takes its equilibrium
value. This is equivalent to saying that the changes are

Lanliag
(R

— 21_1-2_12_ -21_
=1, Ip=lis=l=1251=1, (10

Y Y
129=157. (11

In the 3D case the only nonzero spin terms are

long compared with collision exciton times: the excitons in- 1221 A =|1,1_1_O |1—1_E
) . 22=+ Asp=li1=7 111575
teract between themselves many times before the populations 6 16
change. This approximation is usually called adiabatic or 3 1 1
quasiequilibrium. Thereforey can be taken as fixed in the I%}:Z, Ié'fzz, I%C}:Z, (12

theory to compute energy levels.

Before obtaining the Euler-Lagrange equations, let us disand the ones generated by H41). The main difference
cuss the_shape of th_e Hamiltonian. Substitutiby M in Eq.  petween Eqs(10) and(12) is thatf,=1_T7is not zero in the
(6), (H) is a sum of integrals, but all the tern(is;) are zero.  3p case. These spin terms are proportional to the interaction
This is a nice consequence of the approxima#on0 and  term nyn_,, in Eq. (6). The physical consequence of this
the neutral charge of the exciton. We factorize the expectagct s that, in 2D, M excitons do not exchange with

tion values(l,) in spin part and spatial part. Let us first (_ ) excitons and this enhances the splitting wingiv)
discuss the former and second the latter. The spin part dezpn(—M). As it will become clear in Sec. IIl, if we had

pends on the dimensionality of the space. We shall use thptﬂ: | ﬁthen the splitting would be zero. In order to com-

following notation: &5 s (M) for the probability amplitude  pare with the experimental results performed in quantum
of the electron having spis, and hole having spis, in an  wells, we shall use our 2D results including a renormalized
exciton with spinM. The spin part ofl,) reads “fq term” (1717 interpolated between the 2D and the 3D
values (0 and 3/8, respectivélgs well as a noninteracting
exciton binding energgEQ"=E3"/2=2E3P 2728
W= 2 & o (MDE (M)éy ¢ (M) In order to work out the spatial part, we proceed to make
12 e % % et the functional derivationf 5(H)/ 8¢y (r)1/n(M)=0 to get
four Euler-Lagrange equations, one for ea¢hIn these four
X &s, 5/ (My). (8)  equations there are two well differentiated parts, one corre-
sponding toS5(Hg)/ 8¢ (r) and the other corresponding to
Obviously the spin wave functions depend on the confined(H;,)/8¢n(r). The former generates the usual Wannier
ment of the excitons. In the ideal 2D case, we consider thequatio’ and the latter generates the interaction terms. In
excitons as built up only from heavy holes. This is only aorder to reduce the four interaction terms
gualitative approximation for analyzing actual quantumV(e,e’),V(h',h),V(e,h"),V(€e’,h) to one, i.e..V(q), it is
wells where strong mixing effects can appear in opticalconvenient to work in the momentum representation. We are
properties>?° When just heavy holes are involved, the only going first to derive the equations in the case
possibility for the probability amplitudes is to take the form n(2)=n(—2)=0. This will simplify considerably the equa-
tions and will shed some light on the underlying physics.
Besides, in the experiments the2 optically inactivé exci-
Esg.s(T2)= s, 11205 312:65,.,5,(+ 1) =85 11205, 312, tons are less populated than the optically activé. Hence,
we have only two kinds of excitons, namely, up and down,
7 and]. We omit the algebra because it does not give any
&s, 5, (T 1) =05, 11205, 32 physical information. The two multiexciton polarized Wan-
nier equations aréwe seth=1)

’ ’
Se +Sh +Se »Sh

&s,.5,(—2)=0s,, 11205, 32 €) 9

{ﬂ - ET} &1(a)— () +2Agn [ | ¢T(CI)|2’)’T(Q)
For the bulk casefseysh(M) is set equal to the Clebsch-

Gordan coefficient witd=2 in analogy with the 2D case in =S (a]+2fgn [y (@) &7 () P1(q)
which third components of the angular momentum equal to

+2 appear. If thg actual 3D excitog wave function sh(;quld be 1@y~ 2 (@ (@) 2 (@ (@)]=0,

a combination ofl=2 andJ=1, some quantitative changes (13
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q* a
[z—El}%(Q)—7¢(Q)+2Adm[|¢1(Q)|27¢(Q) AEZJ(Z—:)dWo(CmZAH(q)
_Eud’l(Q)]+2fdn1[?’T(Q)¢?(Q)¢1(Q)+|¢T(Q)|271 J dg J qi . o
d AH(t, t .
=@ (a) =24 (a)pi(q)]=0, (14) T Gma?el@ | g (tp)do(t+p)
17

Using Eq.(13) in Eqg. (17) we obtain the following ex-
pression for the 2D case:

with

ys(q)Ef (zd—j)c[(ﬁs(erﬁ)V(f), AE;=2n(11—=13)+2f qun (11— 12),

di where
Sos(@= [ gt (@ (EraVD, (9

dq S dt

) |1—J’Wﬂ¢o((ﬂ| fwv(t)¢o(q+t)
where V(s) is the Fourier-transform of the bare Coulomb
potential ancE; andE | are the Lagrange multipliers associ- an
ated to the normalization constraint which are interpreted as
the exciton energies. Note that Eq$3), (14), and(15) de- da . dt L .
pend on the dimension through Ay, andf. The first two |z:f —d|¢o(Q)|2f ——|do(q+1)|2V(1).

. S (2m) (2m)

terms in Eqs(13) and (14) are the usual Wannier interac- (18)
tionless, two band, exciton equation. The other terms propor-

tional ton; andn; represent the mean field exciton-exciton  Since we are in the lowest order of perturbation theory

interaction. Observe that we can obtain each equation by, andl, do not depend on the perturbed wave functions. In
reversing all the spins of the other because there is no magpe Appendix we show that in 20,= Tra2|E§D| and

netic field. The spin symmetry breaking comes from the faciiZ: 7T|EéD| a2315m2/212 Where|E§D| is the 2D Rydberg
that iy # Ny - E3P=—2e?/sa=—2h%epa’=4E3". We obtain

lIl. CALCULATION OF THE INTERACTING EXCITON AE;=k|EZ7[a®(n;+fouwn)),
ENERGY LEVELS

A. Perturbation theory AE | =K|E3Pla%(n |+ fquwn;),

Solving the multiexciton Wannier equatiofik3) and(14)
exactly is not possible and therefore we use some approxi- A2DEAET_AEl:k|EgD|(1_fQW)(nT_nL)aZ, (19
mations. First we calculaté perturbatively, using two first ) o
terms in Eqs(13) and (14) as an unperturbed Hamiltonian Where k_= 1.515. We observe that the_ interexcitonic ex-
and the interacting terms as the perturbation. The perturb&hange interaction produces a blueshift of the levels. Al-
tion parameter is obviouslgia® and, as we stressed before, though this calculation dogs not !nclude screening effect's,
we must drop all the contributions to the energy with orderA”” gives properly the spin splitting because screening is
higher thanna’. Consequently, we do not go further than SPin independent as discussed below. We observettfais
first order perturbation theory, which means that the interactProportional to the polarizatio®=(n;—n )/(n;+n;) and
ing exciton wave function is the same as the noninteracting@kes its maximum value whefy,,,=0, i.e., in the strictly

one. Hence, to first order in perturbation theory,2D case. Anywayfqy is significantly smaller than 1 and we
b= b= o Where shall drop it in the following calculations. In the nonpolar-

ized case we retrieve the result obtained by Schmitt-Rink
et al. for energy shifts'*
In 3D we obtain analogously, — | ,=13#7/3 which brings

. (27T)1/2a 8(7Ta3)1/2 to

_ 3D _
0 (q)_ [1+(aq/2)2]37 ’ ¢O (q)_ [1+(aq)2]21
(16)

_ sy ,3( 10 6
AET—13’7T/3|E0 |a 1—6nT+ 1—6nl , (20)
are the exciton wave functions in the isotropic, parabolic two
band modef® In the momentum representation the Sehro
dinger equation is an integral equatifhThe perturbation

AE,=13#/3|EZP|a® 10
gives a first order correction l 0

L6
16" " 161
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0 6 The =2 exciton density is negligible compared with that of
AP=AE;~AE=13n/3| E3D|(16 16)(“7 n,)a’ the =1 excitons because the 2 excitons cannot be opti-
cally generated in one photon processes. Therefore, their in-
=3.4E3"(n;—n))a. fluence onA?P is very small.

In the 3D case we have
The energy splitting between spinl and spin+ 1 exci-

tons that occurs in the 3D case is, at equal densitiah 1 1 1 0
very close to the 2D one; both of them scaled in their corre- 4
sponding RydbergEg. Hence, we predict that the energy E.» 10 6 1 N,
splitting, measured in units &3, has a very weak depen- E 1 6 16 2
dence on the quantum well width. On the other hand, in the 4 1] _ B_”Esoas N1
3D nonpolarized case we do not recover exactly the result E_; 6 ° 1 6 10 1 n_;
obtained by Haug and Schmitt-Ritfkfor energy shifts be- 4 16 16 n
cause we do not use spinless wave functions as they do. The 2 1 2
effect of the spin part of the wave function is to set o - 1 1
Azp=10/16 instead of 1 as in their calculations. 4

We have been able to calculate the many-body corrections (23

to the exciton binding energy in the case,=n_,=0 using
perturbation theory. The many-body correctionsEp and
E, do not depend on the energy levels of2 excitons.

Therefore, we do not need to write the multiexciton equa- h 01 -2 and + liqibl lated,
tions for then, ,#n_,#0 case. In order to avoid tedious With N=1=10"cm "~ and =2 exciton negligibly populate

algebra we can evaluate the energy corrections by countlng1e later energy levels are higheess boungithan thex 1
how many integrals are nonzero in the sums of &y.no- xcitons both in 2D and 3D because th@ excitons interact

ticing that each bracket makes a contribution equal tdVith two highly populated excitons, say;1 and—1.
I— I, times the spin factor. In this way we obtain for the 2D

This equation does not carry new physics compared to Eqg.
(20) and, as in the 2D case, the influence of th2 excitons
is limited because of their very low occupation. In a situation

case the following interexcitonic exchange corrections: B. Screening corrections
S k k k 0\ /n;; Hitherto we have used the unscreened Coulomb potential
E.l k kK 0 k|[n,, reduced by the dielectric constaatof the material in its
S £ E2D 2 K 0 k K (21 ground state. The presence of a considerable amount of ex-
-1 N-1 cited mobile carriergelectrons and hole¢screens the inter-
E_» 0 k k k/\n_, action between these carriers and the rest of the lattice. The

renormalization of the exciton binding energy caused by
screening has received considerable attertfih>?In order
to simplify the theory we have calculated the screening cor-
rections in the random phase approximati&®A).’ In this
approximation the screening correction to the binding energy

A prediction of this theory is that, neglectirfg,,-like fac-
tors, theM excitons interact with equal strength with all the
others except with the-{ M) excitons for which no interac-
tion exists. The energy splitting af 1 excitons is given by

AP=KEIaNN 10, (22)  does not depend on the exciton spir being
|
AES=—n S VA{) (|(1S|e'aq r_ iﬁci.F| v”>|)2|(1§|e"“a'F—eiﬁ’ﬁ-qVf>|)2, "
v’ V"q 2( E0+ 2'\q/|EX)

where Mgyx=mg+m;, is the total exciton mass arjad) are  Next, we transform the summation in an integral following
the exciton internal stategy=m,/Mgx and B=m./Mgyx. the usual prescription. The screening correction we obtain in
Using the completeness relation we get the 2D case is

_ [(1s|1—cogq-r)|1s)]?
q° AES®=— 7na?|E3P|w?F (W), (26)
2MEgx

ESC —-2n 2 V2(

Eo+
wherew=(M/4u)*? and

=—-2n> V|1 ! g
- na (Q) _(1+a2q2/4)2 q2

Eo+ oM
EX
25 Fw=[5

2 1
1+x2)3’2 X2+ w2

(27)
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In glpaAs quantum welt=m,/m,=2.5 which leads to C. Variational approach
s
w

2)

Z/fZ?Dl'Z’ WZF(W_):O'“'. and AE§™=- We have a set of complicated equatidis3) and (14)]
0.41mna’|Eg’|. The screening contribution reduces the ef-fo; which we have applied first order perturbation theory.
fect of.the bare Coulomb interaction betwgen the carriergye cannot go beyond first order due to our previous hypoth-
producing a relative redshift of all the exciton levels andggis put we would like to extract more information from
therefore does not contribut_e to the spin level spllitting. ltthose equations. In order to do that we have tried a simple
must be stressed that’F(w) is a very smooth function of yariational approach in the 2D case. As we did in the pertur-
my/me and the screening correction is rather insensitive tqyation approach we treat Eq4.3) and(14) as a Schidinger

variations of this mass ratio. _ _equation. We identify a Hamiltonian and minimize
A physical interpretation of the way the screening modi-( 4(q, a)|H|4(q,«)), with

fies the exciton binding energy is the following. In the pre-

ceding section we calculated the exciton binding energies

taking into account the interexcitonic interaction with the (2m)2aa

bare Coulomb potentia¥,. Now we calculate the dressed v(g) = ,
o i 0 [1+(aaq/2)?]%"?

Coulomb potentiaV/g in the RPA and we treat the difference

Vs~V as a perturbation. It happens that, to the lowest order, o \ye yse the exciton radius as a variational parameter.

_ . . 7 . _ ) ) -
V5=V, is proportional” to n and we must use the noninter- o ancai, may be improved if we makedependent on the

acting wave functions to evaluate the screening COIrectiony,, yovever, the calculations are much simpler with ansatz
Furthermore, we cannot calculate the screening correctio . The nontrivial integrals we have to perform are precisely

to the blueshifts caused by the interexcitonic exchanzgtze mterl-1 and|, scalinga with the variational parameter. After
action because they would be, at least, of ordea“j-.

. . NN oo X some algebra we arrive at
Hence the 2D exciton levels including interexcitonic ex-
change and screening are obtained from

(30

Em(a,n,ny)=|E3"| i—erl 515ya’a

E+2 -1 M IARERRI\Y| 0 (a)z o . M
E+l 2D - 1
E_ =l&| _, —1.28a2(a)?|, (31)
E-2 -1 wheren is the total density and,, is theM-exciton density.

k—q k—-gq k—-g —q In this expression we have set0. Now we have to look for

Kkea ke B K the « that minimizesE,;(«,n,ny) for eachn. We have done

+|E2D| a2 g q g q that numerically obtaining that, up a?=0.2, the varia-
0 k=0 —-q k-q k-q tional technique and the perturbation theory predict the same
k—q

-q k-q k-—q energyAE(M,n) with an error less than 1% anegdoes not
differ from 1 (the perturbation theory valuenore than a few

Nio percent. We can conclude that, in the small density limit

(na®?<0.2), the energy is properly given by first order per-

n
x| , (28)  turbation theory and the wave function is the independent
Ny exciton one.
n-s
where the screening redshift constapt 1.28 is very close IV. EXCITON SPIN DYNAMICS
to the bare excitonic blueshift constadat 1.515 previously

One could expect our theory to predict new spin flip chan-
nels originated by the interaction. However, this is not the
Ttase because the interaction terms in EfS) and(14) are
proportional ton and the transitions rates are proportional to
the squared interactions terms, i®?, Hence, following the
W(32+ 63w+ 44W2+ 11w°) considerations made in Sec. Il, weustneglect these “in-

teracting” transition rates: our theory predicts no significant

variations of transitions rates with respect to those of the
8w(4+3w) noninteracting theofywhile the energy levels correspond to

——2)Ew|Eo|na3f(w). (29  Eq. (28). Therefore, we borrow the population evolution

(1+w) equation from Ref. 7,

As in the 2D case, the screening correction in the RPA is
quite insensitive to variations af. Hence, we also take
z=m,/my=2.5 for 3D GaAs which lead§w]=—5.0 and dn
AES*=—57|E3P|na®. Hence, the bulk interacting exciton o (32)
levels are given by Eq23) minus the screening correction
AEZS where

obtained.
The screening correction energy in bulk was calculated i
RPA by Zimmermanit obtaining

AES*=7|E3P|na’

(1+w)?
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— (W3t Wg,— 1) Wi, wh 12 0
W5, —(Wr+Wg W, erz,l
+W5 o+ W] )
= ' ’ . 33
Wg,—l Wt — (We+W We, 33
+\/\/131,724'\/\/&1,2)
0 Wi, Wey —(We, o+ W, 1))

This equation is obtained from the master equation by makfa) and energy levels(b) with an initial density of
ing the approximation of quasi-equilibrium and taking into na?= 0.1 (about 18 excitons per cr) and an initial polar-
account the detailed balance principfeThere are three ization P=(n;,—n)/(n;+n)=80%. In Fig. 1a we ob-
kinds of transition rates: the easiest to understand is the raerve that the polarization disappears in roughly 50 ps. As
diative recombination rate®/s which affect only the opti- we see in the inset the 2 populations are, at least, one order
cally active excitons*t1. Also, we have thé/\/ﬁ,,(h,z,l, rates, Of magnitude smaller and they decay much slower than the
say, the transition 1) exciton to (M') exciton caused by optically active ones. In Fig. (b) the more important fea-

() sin fp.The st type o ransion ot s W1ES re e splling between sp and spin 1 evcone
associated to the intraexcitonic exchange mechanism. Fofr : XCl v -
lowing Ref. 7 we set conduction band than the1 ones. Int=0 the splitting

takes its maximum value, 0.E§", about 2 meV, and then

Wg=1/400ps, decreases becoming zero dt=50 ps, as observed
experimentally’. It must be stressed that the contrapolarized
W 1 1 (less populatedexciton level shows an energy redshift and
MM 76 1+ exd (Ey: —En) B8]’
1 1 003 .
]
M,M’ _ = ] B
Wex™ = o T exil (Em—Em) 81" 34 ()  Jo "

where 7% are the single particle spin flip timé§;'3 *% is
the exchange spin flip time calculated by Maia#eal.,’
B=1kgT, and E, are those of Eq(28). The numerical

)
feo=]
e

T T T 1
500 1000 1500 2000

values of7*(" and X are taken from the case Il of Ref. 7. Zoa- / i)
z
V. RESULTS AND CONCLUSIONS 02/

The solution of the nonlinear equatiof32) is obtained 00 ‘ : ‘ ‘ ‘ I \ ]
numerically by a Runge-Kutta method. Inserting the time 0 5 100 150 200 250 300 350 400
dependence of the densities in E88) we obtain the time t{ps)
evolution of the exciton levels. In our theoretical calculations 091 (b)
the natural energy scale is the Rydb(éﬂgg 2D_or 3D. In XX N KX XN K XK K KX KK KN XX
order to compare our results with experiméntsve shall 104
plot the energies in units &Y. We have performed cal- \
culations with different values fofgy that, as discussed in i—“‘ P
Sec. Il, must be greater than(@D value and smaller than ul P
3/8 (3D value. The results do not depend qualitatively on 104 g
the particular value fof o,y and we present here results for d
fow=3/80, i.e., close to the 2D value, because we want to 13 ‘ : : : : : : : : ‘

compare with experiments in very narrow wettsOn the 0 10 2 0 40 0 6 70 8 % 100
other hand, we have checked that the results are insensitive t(s)
to the variation of the initial populations of 2 excitons
provided they are less than 10% of the total initial density , i , ,
ng and, consequently, we present figures obtained from an FIG. 1.(3@ +1 exciton population as afunct|c_>n of tinf@—400
initial density of =2 excitons equal to zero. We adopt the P The dashed line is the 1 popula_ltlon. In_the Inset we plo.t the
following conventions:(i) the (+1) exciton is the more +2 (circles ar_1d—2(crosse}spopulqtlons(notlce the different time
" . . scalg. (b) Exciton levels as a function of tim@-140 p$ measured
populated state at=0; (ii) the populations are measured in

o .. U in quantum well free exciton energgee text Crosses and circles
Ny units; (|||)_ the origin of energies is taken at the bottom of again thex 2 excitons. The dashed line corresponds tal{
the conduction band.

: ) o ) exciton energy. Initial densityna?=0.1, initial polarization
In Fig. 1 we plot our theoretical predictions of populations p—ggo .
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FIG. 2. As in Fig. 1 withn=0.1, P=60%. FIG. 3. As in Fig. 1 withn=0.05, P=80%.

the copolarizedmore populatedstarts having a blueshift but fails to describe in detail the absolute position of the
and, when its population decreases, presents a redshift. WRCitonic luminescence peaks:™ These disagreements can
also show similar results with either different initial polariza- P& due to effects not taken into account in our thegry:
tion (Fig. 2) or population(Fig. 3. The main difference be- Mixing effects in the valence band connected with finite
tween Fig. 2 where®=60% and Fig. 1 wher®=80% is width of actual quantum wells in the growth directidhgii)

the decrease of the 1 splitting as well as a shorter duration PINNINg of excitons to impurities, an effect that might change
of this splitting. In Fig. 3 we set the initial populationa? the exciton energies; an(di) failure of the approximation of
equal to 0.05(about 5.0¢<101° excitons per crf) and the considering the center of mass at rest to explain nonresonant
initial polarization once agaiP=80%. The spliting is ©*Cltalion experiments.

smaller than the one observed in Fig. 1, about H%and In summary, we have presented a theory which describes

its duration is longer the interacting polarized exciton gas with moderately high
. ger. density. We have obtained a set of multiexciton Wannier

The main consequences we extract from these results are. ~ . h h ived. both bati | d
the following. eqqat!onsllt atbwg have solve ’h'f'?t pgrturl_a_nvate y an
(i) The spin level degeneracy breaking is proportional tovanatlona y, obtaining energy shifts and splittings origi-

the polarization of excitons populations and both polarizationnatEd by the interexcitonic exchange interaction. Whenever

and splitting disappear in a time of the order of 50 ps differences between the exciton populations exist, energy
(ii) The =2 excitons are negligibly populated and there_Ievels are split. Calculated and experimentally observed

fore do not influence the-1 exciton energy levels, although splittings are in good qualitative agreement.
the opposite is true: thec1 excitons do influence the: 2
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sity, something that happens in our results, where the varia-
tion of this energy withn is very small for the majority
excitons. This is a consequence of the cancellation between
the exchangek) and screeningd) corrections mentioned in In this appendix we calculatl, andl, both in 2D and
Sec. Il B. Our theory gives good results for level splittings 3D. The calculation of

APPENDIX: CALCULATION OF 1, AND I,
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dt - .
EOOEJW|¢O(q+t)|2V(t)

e
:JWV(S)J dry(r)e 'star

:JdFX(F)e-iq ff(z )zv (Se ST (A7)

where

x(ﬂzJW

= tdo(tr)dt o2
— a2 -7
- fO [1+at/2)2]3 2 K2(7)a

T O
|¢o(t)|ze't'r:EJOtJo(tr)|¢o(t)|2

(A8)
whereJy(x) is the Bessel function of the first kinl,(y) is

the modified Bessel function, ang=2r/a. SinceV(§) is
the Fourier-transform of the Coulomb potential,

(A9)

and we obtain

47792

=, 2r » 5 15
. r<kK, a Jo(qr)dr=3m“e“a,F, 5’5’1’

respectively. In order to compare with experiments one must take

into account that is roughly 100 A .

dq Jf dt L
|1—fw|¢o(CI)| JWV(U%(C{H) (A1)
can be done both in 2D and 3D by using the Sdimger
equation

2

a
2 Eo} ¢o(q).  (A2)

f ﬁV(t)d)o(qH)

Substituting(A2) in (Al) we obtain

dg kS
|1‘fW|¢o(Q)| m‘Eo - (A3)
In the 2D case we obtain for this integral
xdx
I,=8ma?|E3") f01+—x2)5 mEFa?  (Ad)
and in the 3D case
= x2dx
_ 511 =3D| 43 _ 3D| 43
= 21EDa f0(1+x2)7 217]EPa®.  (AS)
The calculation of
I_f dq ezf dt e
2= W|¢O(q)| W|¢o(q+t)| (t)
(A6)

—(qa/2)2} (A10)
where
(@b X (a+k—1)!
FrlabexI=2 = = A= T
(A11)

is the confluent hypergeometrical function. In order to obtain
I, we use(Al0) in (A6) and we get

X 2F1[2 ’ 211 Xz]dx 315 3 2D .2
=37 aezf 1570 = 2008 |EG"|as,
(A12)
where we have used
wa2Fl[% ,3.1,—x*]dx 2 315 AL
0 (1+x2)3 =372006 A

In 3D the calculation of , is easier. We have
'_J dq sz dt A
2= W|¢O(q)| (2—77)c{|¢>0((1+t)| (t)

T (1+x%)4

fo (l+x2+y2 2xyé)*’
(A14)

is more cumbersome. We start with the 2D case by perfomwherex=a|q|, y=a|t|, andaqt =xycos(). Now we per-

ing the integral

form the integrations ovef andy in two steps,
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F(x y)Ef+l 2 d2§ fOCd—yF(x y)=zx15+ 10X2+3XAEJ(X). (A16)
T (M yP-2xye)t oy 8T (103
1 1
T Bxy | (I+x2+y?—2xy)? Hence, we obtain
1
_(l+x2+y2+2xy)3] (A15) 12 »xJ(x)dx 100

_% |F3D[43 _T9Y 3D .3
and 2 6’7T|EO |a 0[1+X2]4 6 7T|EO |a. (A17)
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