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Resonance Raman scattering in InSb: 
Deformation potentials and interference effects at the E 1 gap 
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This paper presents a reevaluation of the optical-phonon deformation potential constants near the 
E 1 gap of InSb. The absolute values of the deformation potentials di,0 and di,o are obtained from a 
measurement of the Raman efficiency for allowed LO-phonon scattering and a fit of previous 
uniaxial-stress experiments by using new ellipsometric data for the optical susceptibility. The signs 
of the deformation potentials are deduced from a study of the interference between the amplitudes 
for forbidden and allowed LO-Raman scattering. The values obtained are di,0 = -16.2±4 eV and 
d~,o=32.9±8 eV. The study of the interference also provides information about the relative weight 
of different sources of forbidden LO-Raman scattering. 

I. INTRODUCTION 

The existence of resonance in the efficiency for Raman 
scattering by phonons near the E 1 edge of InSb was first 
suggested by Pinczuk and Burstein. 1 This effect was con­
firmed by Leite and Scott for InAs.2 The detailed investi­
gation of these phenomena, however, had to await the ad­
vent of the cw dye laser. 3•4 Measurements of E 1 reso­
nances were performed for Ge and InSb (Refs. 3-7) since 
these resonances occur in the lasing range of the 
Rhodamine-6G dye, one of the most efficient dyes for cw 
operation and the first one used. 

The detailed study of the resonance behavior of the Ra­
man efficiency near electronic critical points provides in­
formation about the electron-phonon interaction. In co­
valent semiconductors such as Si and Ge, this interaction 
is of short range8 and characterized by the so-called "de­
formation potentials" (DP's).8 - 10 The longitudinal­
optical (LO) phonons in polar semiconductors such as 
InSb produce a macroscopic electric field, which interacts 
with the electrons. This coupling, of long range, is known 
as the Frohlich interaction. The Frohlich interaction is 
responsible for the dipole-forbidden LO~Raman scattering 
observed for laser energies near critical points. The cou­
pling constant, normally written as Cp,9•10 can be ex­
pressed in terms of the static and high-frequency dielec­
tric constants. The coupling parameters of the DP in­
teraction are of more interest, because they are related to 
the details of the electronic band structure of the material 
under ccinsideration. The deformation potentials can be 
obtained from measurements of the absolute Raman effi­
ciencies. However, their sign remains undetermined, un­
less some other scattering mechanism interferes with the 
amplitude for DP-induced Raman scattering.10 

In this paper we present a reevaluation of the DP con­
stants di,o and d~,o (Kane's notation9• 

10
) for the E 1 gap 

and its spin-orbit partner E 1 + .6.1 along the [ 111] direc­
tion in the Brillouin zone of the InSb. We also perform 
the first experimental determination of their sign. To that 
purpose we study the interference between the amplitudes 
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for allowed (DP-induced) and forbidden (Frohlich­
induced) LO-Raman scattering.11 This study also pro­
vides information about the relative contribution of dif­
ferent possible sources of forbidden LO-Raman scattering. 

Within the scope of the adiabatic approximation (the 
limit in which the phonon frequency tends to zero), the 
components of the Raman tensor for DP-induced scatter­
ing can be written in terms of the optical susceptibility 
and its first derivative. Two possible procedures can be 
adopted in order to evaluate the Raman tensor: One can 
use either experimental optical data or approximate 
analytical expressions for the optical susceptibility ob­
tained from a model description of the critical points. 
The latter procedure has been often used near the E 0 and 
E 0 +.6.o transitions at the r point.9•10 On the other hand, 
previous investigators have analyzed their Raman data 
near the E 1 gap in terms of experimental values of the op­
tical susceptibility, in the hope of including excitonic ef­
fects which are difficult to treat in analytic form. 3•5- 7 

This method, however, has the shortcoming that one 
needs a complicated numerical manipulation of the opti­
cal data to separate the contributions of the E 1 and 
E 1 +A1 gaps. On the other hand, the main effect of the 
excitonic interaction on the susceptibilities can be 
represented12•

13 by a multiplicative factor of the form 
Aeilf'. This factor mixes real and imaginary parts of the 
susceptibility, but only multiplies by A 2 the Raman effi­
ciency, which is proportional to the square of the magni­
tude of the Raman tensor. Hence, introducing the exci­
tonic interaction should only enhance the calculated Ra­
man efficiency, but not change its functional dependence 
on the laser frequency. 

We thus adopt the following procedure to evaluate the 
Raman tensor.14 We describe the E 1 and E 1 +A1 gaps as 
two-dimensional interband minima and then fit the stan­
dard expression for the susceptibility at these critical 
points to our experimental data for the optical constants, 
whereby the analytic expressions are multiplied by factors 
Ae1.P and a broadening parameter is introduced. There­
sulting expressions are used to evaluate the Raman tensor. 
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With the Raman tensor so calculated we attempt to fit 
previous resonant experiments under uniaxial stress7 and 
to calculate th¥ interference effects between allowed and 
forbidden LO-Raman scattering, using published analytic 
expressions for the forbidden contribution. 

The fits we obtain to previous resonance experiments 
under uniaxial stress7 for transverse-optical (TO)-phonon 
Raman scattering are of similar quality as those obtained 
in Ref. 7, but the corresponding deformation potentials 
are in much better agreement with the theoretical predic­
tions. The analysis of the inteference experiments con­
firms the theoretically predicted signs of the deformation 
potentials involved. On the other hand, this analysis sug­
gests that impurities produce the most important scatter­
ing mechanism for forbidden LO-Raman scattering, as 
proposed by Gogolin and Rashba.15 

II. EXPERIMENTAL 

Our sample was a (001)-oriented slab of undoped InSb. 
At 100 K, the sample is p type with RH=230 cm3/C and 
p=O.S n cm.16 The optical susceptibility was measured 
by ellipsometry as described.elsewhereY· 13 We used for 
both ellipsometry and Raman scattering the surface treat­
ment described in Ref. 13. 

Our coordinate system is x ([100]), y ([010]), z ([001}), 
x' ([110]), y' ([llO]). In the scattering configuratiog 
z(x,y ):Z [the coordinates inside (outside) the brackets indi­
cate the polarization (wave vector) of the light], Raman 
scattering by LO phonons is dipole allowed. The dipole 
selection rules forbid Raman scattering by LO phonons in 
the z(x,x ):Z and x (y ,y ):Z configurations. 9· 10 However, the 
LO peak can be observed in these configurations for laser 
energies near critical points. This violation of the dipole 
selection rules is due to the q-dependent contribution of 
the Frohlich interaction.9• 10 Both allowed and "forbid­
den" Raman scattering by LO phonons are present in the 
z(x',x')z and z(y',y')z configurations. Thus one expects 
for these configurations to observe interferences between 
the amplitudes for forbidden and allowed scattering. 

We cut three thin rectangular slabs with the long sides 
parallel to [100], [110], and [ITO]. The three samples 
were glued to the cold finger of a N 2 cryostat with the 
long sides in vertical position. A Si slab was added in or­
der to determine scattering rates by the sample substitu­
tion method. 10 A simple horizontal shift of the Dewar 
was needed to change the scattering configuration. The 
[110] and [llO] directions were identified by chemical 
etching. 11 [The sample was immersed at room tempera­
ture for one minute in a solution of one part FH (48%)­
and three parts H20 2 (15%) after finishing the Raman 
measurements and the etch pattern observed with a micro­
scope.] 

The measurements were performed with a dye laser, us­
ing Rhodamine-6G pumped with a cw Ar+ laser. The 
light beam was focused onto the sample with a cylindrical 
lens. The scattered light was analyzed with a 1-
m-Jarrell-Ash double monochromator and detected by· 
photon counting. · 

The Stokes scattering rate outside the sample can be 
written 

(1) 

where P£ is the incident laser power; Ts,L = l-rs,L• 
where r is the power reflectivity and the subscript L ( S) 
means that it is evaluated at the incident (scattered) fre­
quency; a the absorption coefficient; n the refractive in­
dex; ms the scattered frequency; M* the reduced mass of 
the primitive cell; Vc the volume of the primitive cell; nph 

the Raman phonon frequency; n(flph) the phonon occupa­
tion factor; c the speed of light in vacuum; and an' the 
solid angle of collection outside the crystal. The last fac-
tor defines the Raman tensor R which is contracted with 
the light polarization vectors 'eL and 'e8 . The independent 
components of R are called Raman polarizabilities. 10 In 
the dipole approximation, symmetry allows only one such 
component for diamond- and zinc-blende semiconductors 
usually called a. 10 . ' 

Equation ( l) can be used to obtain absolute values of 
the Raman polarizability by the sample substitution 
method, measuring simultaneously a sample of known a. 
We use silicon as a reference. Its Raman polarizability is 
known17 although the error :rpargin is large (we take, at 
mL =2.0 eV, ! a! =40± 10 A2

). The expression in the 
curly brackets of Eq. ( 1) takes different values for Si and 

- InSb and has to be evaluated for each material. The opti­
cal constants required for InSb were obtained from our el­
lipsometric data. For Si, we used absorption data from 
Dash and Newman18 and additional data from Aspnes · 
and Studna.19 

III. RESULTS 

A. Ellipsometric data 

We have reevaluated the optical constants of InSb by 
using a digital rotating analyzer ellipsometer. Our results 
for the optical susceptibility X (E= 1 +4TTX) and its 
derivative dX I dE are shown in Fig. 1. Also shown are 

. the results of Shaklee et al. for dX!dE obtained with 
wavelength modulation spectroscopy.20 The most impor­
tant difference between the two sets of data is the 
minimum of Im(dX!dE), which in Ref. 20 is strongly 
enhanced. Due to the very large longitudinal mass in the 
[111} direction, the E 1 and E 1 +.6.1 gaps of InSb can be 
considered to correspond to a 2d interband minimum. 
The optical susceptibility associated with these transitions 
is 

(2) 

where x+ is the contribution of the E 1 gap and x- the 
contribution of the E1 +.6.1 gap. The functions x± are 
approximately given by10 

x+(E)=- A; (Et+.b.t/3)ln[l-(E/E1 )2], (3a) 
E 

x-(E)=- A~ (Et +2.6.t/3) . 
. E 

Xln{ 1-[E/(Et +.b.t>fJ . (3b) 
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FIG. 1. Optical susceptibility of InSb. The solid and dashed 
lines represent our ellipsometric measurements. The dot-dashed 
line indicates the wavelength modulation data of Ref. 8. 

Theory predicts A +=A -=4V3e2/91Ta 0 =0.54 eV. Here 
e is the free-electron charge and a0 the lattice constant. 

The experimental data of Fig. 1 were fitted with Eqs. 
(2) and (3) taking A+ ,A- as adjustable parameters; add­
ing a small imaginary part to the gaps, E 1 ---+-E 1 - i 71 +, 
E1 +.6-t--->-Et +.6..t-i71-; and multiplying x+ and x- by 
factors el!/t±, to take into account excitonic effects.12

• 
13 In 

order to eliminate the weakly dispersive contribution of 
lower and higher interband transitions, the fits are per­
formed to the second energy derivative of X. The fitted 
parameters are A+=0.54 eV, A-=().44 eV, E 1 =1.972 
eV, .6.1=0.498 eV, 71+=0.022 eV, 7J-=0.027 eV, and 
¢+ ~ ¢-=1r /2. These values of ¢+ ,¢- mean that the ex­
citonic effects are so strong that the critical point can be 
described as a 2d saddle point instead of a 2d minimum. 
Whereas fits of this type give an excellent agreement with 
our ellipsometric data, they deviate considerably from 
those of Shaklee et al. 20 We have also performed room­
temperature measurements and found an excellent agree­
ment with earlier ellipsometric data.19

•
21 We therefore be­

lieve our results at 100 K to be more reliable than those of 
Ref. 20. 

The function X(E) was determined in Ref. 5 by in­
tegrating Shaklee's20 dX/dE. The values found for· the 
imaginary part of X (Fig. 2 of Ref. 5) seem to be too large 
as compared with the present ones. The real part is shift­
ed due to the arbitrary integration constant. The jump at 
E 1 is again too large compared with our experimental X. 

B. Raman experiment 

Our Raman results are shown in Fig. 2(a). Contrary to 
the case of the E 0 +.6.0 resonance in GaAs,ll the two con­
figurations where we expect interferences show strong 
maxima at the position where the strongest interference 
would be expected. 
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FIG. 2. (a) Resonant Raman scattering (RRS) spectra of LO 
phonons near the E 1 gap of InSb. The tensor components mea­
sured in each configuration are indicated in Eq. (14). (b) Calcu­
lated RRS spectra of LO phonons. See Sec. IV C. 

IV. THEORY 

A. Raman scattering by TO phonons 

Transverse-optical phonons produce Raman scattering 
only via the DP interaction. The Raman polarizability 
near the E 1 gap is given by10 

a~ [ 1 5 dX(E) 
a= 4¥6 - 2v'2dt,o dEl 

+2ds x+<E>-x-<E> +C] 
3,o a

1 
(4) 

The constant C represents the contribution of interband 
transitions far from the E 1 and E 1 +A 1 gaps. The first 
term in the large parentheses arises from two-band pro­
cesses produced by the phonon modulation of the gap. 
They are characterized by the deformation potential di,0• 

The coupling of the two spin orbit-split valence bands by 
the phonon produces the second term in Eq. (4). The 
strength of this coupling is measured by the deformation 
potential d~ 0• Equation (2) has been derived within the 

' ' 
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adiabatic approximation (wL·~ws ). If the phonon energy 
nnph is not negligible with respect to I nw L - E 1 + i 1J I ' 
the derivative in Eq. (4) must be replaced by a fmite 
difference of the susceptibility evaluated at E=nwL and 
nw8 . However, we have checked that for nfiph~1J±, as in 
our case, the error introduced by the adiabatic approxima­
tion is less than 5% if the gap is renormalized to 
E 1 _. E 1 +nfiph/2. The two-band terms, which are pro­
portional to the derivative of the susceptibility, produce a 
sharp resonance at the E 1 gap, while the three-band 
terms, proportional to the susceptibility itself, give rise to 
a broader resonance extending from E 1 to E 1 +A 1• The 
relative weight of the two contributions depends on the 
values of the deformation potentials di,0,d~,o and on the 
spin-orbit parameter A 1• Whereas the deformation poten­
tials have roughly the same values for III-V and group 
IV semiconductors, the spin-orbit splitting is much larger 
for materials with high atomic number. For example, the 
spin-orbit splitting is A1 =0.187 eV in Ge and 0.498 eV 
for InSb. 12• 13 We then expect a relatively stronger two­
band contribution in InSb, because the parameter A 1 ap­
pears in the denominator of the second term in Eq. (4). 
This fact can be confirmed by comparing the shape of 
both resonances. The relative importance of two- and 
three-band contributions also manifests itself in Raman 
experiments under uniaxial stress. 

For uniaxial stress along the [ 111] direction, the E 1 gap 
splits into a singlet and a triplet/·9

•
10 and the Raman ten­

sor now has two independent components. For the 
scattering configuration 'es ll'eL II [111], the tensor com-
ponent has theform7•9•10 · 

A _ ___:1_ [--1-ds .2. [ dX
8 

1_ dXr l 
- 12v'2 2v'2 1' 0 4 dE 1 - 9 dE1 

+2d~.o [ x+ ~x-] r +C] , (5) 

where the superscripts S and T mean that the functions 
are evaluated at the position of the singlet ( S) or triplet 
( T) gap under stress. 

Equation (5) shows that the scattering rate can be 
enhanced up to a factor ( t )2:::::: 4 by applying stress in the 
[111] direction. The actual enhancement depends on the 
shift of the gaps under stress and on the relative magni­
tude of di,0 and dt0• Notice that the enhancement only 
arises from the two-band terms. Experimental results for 
Ge and InSb (Ref. 7) give d~,oldi,0=-7 (lnSb) and 
d~.ol di,0= -1.5 (Ge). Nonlocal pseudopotential cal­
culations22•10 yield d~,0 /di,0 =-2.1 for InSb and 
d~,ol di,0 =-2.8 for Ge at the L point of the Brillouin 
zone. The individual deformation potentials (Refs. 22 and 
10) are di 0 = -18.2 eV (InSb) and di 0 = -17.2 eV (Ge). 
The signs 'are chosen such that a positive di,0 means that 
the E 1 gap along [Ill] increases for a [111] polarized 
phonon amplitude which increases the length of the bond 
along the [111] direction. The discrepancies between 
theoretical estimates and experimental values of the defor­
mation potentials are discussed below. 

B. Allowed Raman scattering by LO phonons 

For LO phonons, the electron-phonon interaction can 
be written as a sum of the deformation-potential contribu­
tion plus the Frohlich Hamiltonian, which arises from the 
macroscopic electric field generated by LO vibrations.· 

The interband terms of the Frohlich Hamiltonian 
(electro-optic interaction) give an additional contribution 
to the Raman tensor, 10 which can be written for back­
scattering at the (001) face: 

0 a 0 

R= a 0 0 
0 0 0 

(6) 

~here now a is a sum of a deformation-potential part like 
Eq. (4) plus an electro-optical contribution. Notice that 
the electro-optical and deformation-potential interactions 
generate Raman tensor contributions of the same symme­
try. 

The electro-optic contribution has been shown to be 
small in InSb (Ref. 6) and will not be taken into account 
in fitting the interferences. In other words, the Raman 
polarizability associated with allowed LO scattering will 
be taken from Eq. (4). 

C. Forbidden LO-Raman scattering 

Near critical points LO scattering is found for configu-
- rations with eL lies which are forbidden, according to the 

tensor in Eq. (6). The results can be explained by assum­
ing that there is an additional diagonal contribution to the 
Raman tensor: 

(7) 

This is the so-called forbidden LO scattering. [The word 
forbidden means that the dipole selection rules from Eq. 
(6) are violated. However, near resonance the scattered in­
tensity is often stronger for forbidden than for allowed 
scattering.] There are different sources of forbidden LO 
scattering. First, the fact that the Raman phonon wave 
vector is not exactly zero leads to a contribution of the in­
traband terms of the Frohlich interaction. For this pro­
cess, the diagonal contribution near the E 1 gap can be 
written7 · 

X [2-(a+/3)ln; ] , 

nwL+i1J-EI 
a= , /3=a-1, 

110w 

(8a) 

(8b) 
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where e and m are the free-electron charge and mass; 
CF is the Frohlich constant CF=[21Te 201£ 00 

-l!t:o)li0w]112; Ow the LO-phonon frequency; P the 
momentum matrix element 1/i <X !Px !s)=P; 
se,h =m1e,hl(ml.e+mllt), with m 1e (rna) being the trans­
verse effective electron (hole) mass; and 
a*=(li/2p1 0L0 ) 112, where Ill is the transverse reduced 
mass. 

An additional, surface-field-induced forbidden LO 
scattering has been proposed by Pinczuk and Burstein. 1 

This effect can be treated in fourth-order perturbation 
theory. The result for backscattering at the (001) face is7 

V3 [ e )
2 

1 [ 1 )
112 

. aF=iq-- -- -- --- CF(s.,-sh) 
41T m W£ W£WS 

2 [2M*Owvc ]
112 

1 1 
XP li a* (li0w)3 

X a: [2-(a+/3Hn [ ~ ]]· (9} 

The feature common to intraband-Frohlich [Eq. (8)] and 
electric-field-induced scattering [Eq. (9)] is that the pho­
non created in the scattering process has a wave vector 
given by q=kL -k8 , exactly like in the allowed case. 
Hence, if we choose a configuration where both effects 
occur, they might interfere because the final states a~e the 
same. Scattering by impurities as a source of forb1dden 
scattering has been proposed by Gogolin and Rashba and 
was recently shown to be important in GaAs (Ref. 11) and 
CdTe.23 This process is also of fourth order in perturba­
tion theory. The virtual electron-hole pair created by the 
light is successively scattered by the Frohlich intemction 
and by an impurity before recombining. The important 
difference with the two previous mechanisms is that in­
stead of a phonon with q=kL -k8 , a distribution of pho­
nons is created, having mostly a larger wave vector. A 
calculation of this process for a three-dimensional critical 
point was presented in Ref. 11. Although no theoretical 
evaluation is available for the E 1 gap, we can anticipate 
some chamcteristics: Because the phonon wave vector is 
not fixed by the rule q=kL -k8 , the scattering mecha­
nism will select mainly those q vectors which produce the 
simultaneous cancellation of two denominators in the per­
turbative expansion of the Raman ;olarizability. This ef­
fect is called "double resonance."2 The condition can be 
achieved for liws =E 1> leading to a strong outgoing reso­
nance, i.e., the maximum of the forbidden resonance for 
this process tends to occur at liwL =E 1 +liOLo· This is 
fliOw higher than the resonances from Eqs. (8) and (9), 

which have maxima at liwL ~E1 +fliOw. 
The impurity-induced Raman tensor has th7 form 

0 0 

RF;= 0 aFi 0 (10) 

0 0 aFi 

Possible off-diagonal matrix elements are expected to be 
very small. 7 

D. Interference effects 

As discussed above in allowed LO scattering, the same 
final state is reached as in forbidden LO scattering due to 
the intraband-Frohlich or the electric-field mechanism. 
Hence for backscattering at the (00 1) face we have to add 
the Raman tensors. We thus obtain a total Raman tensor 
given by 

I 

aF a 0 

aF 0 (11) 

0 0 aF 

where aF is obtained by adding Eqs. (8) and (9). This ten­
sor has to be used in Eq. (1). On the other hand, since 
impurity-induced forbidden scattering produces different 
final states, the corres12onding_tens~r [Eq. (10)] has to be 

-squarecCand: added to the square of Eq. (11). The final re­
sult for the configurations we want to measure is 

I aF+a 1
2+ I aFi 1

2 for z(x',x')z 

I aF-a 1
2 + I aFi 1

2 for z(y',y')z 

I aF 1
2+ I aFi 1

2 for z(x,x)z 

l a 12 for z(x,y)z. 

(12) 

Hence, if the impurity mechanism dominates, the config­
urations z(x',x')z and z(y',y')z should give the same re­
sult, whereas we expect a different behavior if the other 
two mechanisms play an important role. 

In Sec. VI we shall attempt to explain the curves of Fig. 
2(a) using an expression similar to Eq. (12) together with 
Eqs. (4) and (8). 

V. REEVALUATION OF THE 
UNIAXIAL-STRESS EXPERIMENTS 

In view of the differences between our ellipsometric 
data and the results of Shaklee et al. for the optical sus­
ceptibility,20 we want to recalculate the resonance of the 
TO-Raman scattering under uniaxial stress measured in 
Ref. 7 and shown here in Fig. 3(a). We use Eq. (5) togeth­
er with Eqs. (3a) and (3b) and the parameters for the opti­
cal susceptibility determined in Sec. III. The prefactors 
ei!/1± are dropped: They should not affect the Raman re­
sult'if, as is true in our case, .,p+ =1/J-. The constant C in 
Eq. (5) is set equal to zero. This is consistent with the 
fact that the Raman efficiency is very small below E 1 and 
above E 1 +a1>5•

6 thus indicating that contributions from 
other interband transitions can be neglected in this energy 
range. The results are shown in Fig. 3(b). The increase in 
the strength of the resonance with increasing stress found 
experimentally is well reproduced by the calculations. 
The calculated shift of the peak energy with increasing 
stress, however, is about a factor of 2 smaller than ob­
served experimentally. The deformation-potential ratio 
d~ oldi 0 =~2.0 which gives the best agreement between 
th~ory ~nd experiment agrees. also with theoretical esti­
mates at the L point.10•

22 
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We represent allowed LO scattering with Eq. (4), thus 
neglecting the electro-optic contribution as mentioned in 
Sec. III. For forbidden scattering, we have discussed in 
Sec. III three possible mechanisms. For the "interfering" 
part in Eq. (12) there are contributions from intraband­
Frohlich-induced and electric-field-induced processes as 
well. An attempt to distinguish between these two mecha­
nisms in Ref. 7 failed because theory predicts for both not 
only a similar strength but also a similar dependence on 
uniaxial stress. In our fit we shall first assume that the 
intraband-Frohlich mechanism is dominant and see 

· whether we can represent the results or'Fig. 2(a) with this 
assumption. Equation (8) for forbidden LO-Raman 
scattering has been deduced without including excitonic 
effects. Because it can be rewritten in terms of the second 
energy derivative of the susceptibility, 10 the effect of the 
excitonic interaction should also be represented by a fac­
tor of the form ei¢+. Thus the use of Eq. (8) is consistent 
with the dropping of such factors in the expression for the 
allowed Raman polarizability (Sec. V). Since no theoreti­
cal calculation of impurity-induced forbidden LO scatter-

- ing near E 1 has been published, we have chosen to 
represent this contribution by a frequency-dependent ten­
sor proportional to Eq. (8), but shifted nfiw/2 to higher 
energies (see Sec. IV C). We introduce a parameter E 

which represents the fraction of forbidden scattering 
which interferes coherently with the allowed one. The 
noninterfering fraction 1-E corresponds presumably to 
impurity-induced scattering. In this sense we rewrite Eqs. 
(12) as11 

I a'((t)L )+sll2a],((t)L) 12 

+0-E) I a],((t)L -fiw/2) 12 for z(x',x')z, 

j -a'((t)L )+sll2a],((t)L) 12 

+ ( 1-~::) I a],((t)L -fiLq/2) 1 2 for z(y',y')z , 

e I ~],(wL) 12+0-E) I a],(wL -fiw/2) 12 

for z(x ,x )z , 

I a'((t)L) 1
2 for z(x,y)z. 

(13a) 

(l3b) 

(13c) 

(13d) 

FIG. 3. RRS spectra of TO phonons in InSb near E 1• (a) Ex- · 
perimental results [Fig. 2(a}, Ref. 7]. (b) Calculated curves with 
our ellipsometric data for the optical susceptibility. 

The primes over the a's mean that we represent them 
with the corresponding expressions Eqs. (4) and (8) times 
a multiplicative factor fitted to experiment. Following 
Eqs. (13a)-(13d), we first fit the configuration z(x,y)Z, 
using for a'((t)L) an expression proportional to Eq. (4) 
with d~,ol di,o= -2.0, and next the configurations 
z(x,x)Z, z(x',x')z, and z(y'y')z, using for a], a function 
proportional to Eq. (8a). We treat e as an adjustable pa­
rameter. Figure 2(b) shows the results which reproduce 
best the experimental data of Fig. 2(a), found for E=O.OS. 
This small value of s means that most of the forbidden 
scattering is impurity induced. This fit shows qualitative 
agreement with experiment, including the surprising result 
that both interference configurations have maxima at the 
postion where the strongest inteference is expected. This 
fact is directly related to the change of sign of 
lm(dX/dE) above E1 which leads to a constructive in~ 
terference for. both configurations, in one case slightly 
above E 1, in the other slightly below. To obtain the· 

VI. INTERFERENCE EFFECTS 
BETWEEN ALLOWED AND FORBIDDEN 

LO SCATTERING 

Having determined the parameters for TO scattering, 
we now try to reproduce theoretically the experimental in­
terference effects at the E 1 resonance shown in Fig. 2(a). 
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strongest constructive inteference for the configuration 
z(y',y')Z, one needs di,0 <0 and d~.o >0, in agreement 
with theoretical estimates.10•22 Thus we have performed 
the first experimental determination of these signs. 

The reasonable agreement between theory and experi­
ment which is obtained by assuming that the interfering 
part of the forbidden tensor is due to the interband­
Frohlich mechanism, suggests that electric-field effects 
are not very important in this case: The additional fre­
quency derivative in Eq. (9) should produce a very dif­
ferent interference resonance. A calculation of the forbid­
den polarizability with Eq. (8) yields I aF I =22 A?, while 
the experimental value, assuming e=0.05, is I ap I ~250 
A.l. The discrepancy between theory and experiment is 
larger than that found previously for GaAs near 
E~+Ll0, 11 but here the uncertainty is much larger, due to 
the much stronger impurity-induced scattering mecha­
nism. 

VII. DETERMINATION OF dto AND di,o 

. If we neglect the electro-optic contribution to allowed 
LO scattering, we can use our absolute measurements to 
determine the defo~ation potentials d~.o and di, 0• We 
use Eq. (4) to fit our experimental results in the configura­
tion z(x,y ):Z of Fig. 2(a). From the uniaxial-stress experi­
ment we know that d j,of d I,o = - 2.0. From the interfer­
ence experiment we know that d~,o > 0. Using these re­
sults we obtain di,0 = -16±4 eV and dt0 =33 ±8 eV. 
The error arises mainly from the uncertainty in the Ra­
man polarizability of silicon.17 

These deformation potentials should be compared with 
theoretical values found in the literature. In doing so, one 
must keep in mind that the experimental values represent 
an average of the values calculated at A points between 
('IT/a0 )(111) (the L point) and ('ITI4a0 )(111). In Ref. 22 
the value d~.o=38 eV was calculated for InSb at the L 
point. A recent pseudopotential calculation25 yields 
di,0 = -14 eV and dj,0 =32 eV at the L point, while the 
A averages corresponding to the E 1 transitions are 
di,o = -12 e V and d ~.o = 35 e V. Hence our experimental 
values agree remarkably well with theoretical predictions. 

VIII. COMPARISON WITH PREVIOUS RESULTS 

A. Dreybrodt et al. (1972) 

The resonant Raman scattering (RRS) curves measured 
by Dreybrodt et a!. 5 were fitted with expressions similar 
to Eq. (4). The function dXIdE1 was replaced by 
-dXIdE, which is a good approximation near the 
crititcal-point energy. The derivative dX IdE was taken 
from the experimental data of Shaklee et al. 20 For the 
three-band terrns, one needs the function x+ -x-. Drey­
brodt et al. 5 assume 

x+(E) =X(E), x-(E) =0 for E-E 1 • (14) 

This is a good approximation for the imaginary part of 
the X's because the spin-orbit splitting is much larger than 
the broadening of the critical points under consideration. 
The approximation is not as good for the real parts; how­
ever, possible differences can be absorbed in the real con-

stant C added to the Raman polarizability by these au­
thors. The function X(E) was obtained by integration of 
the derivative spectrum of Shaklee et al. This integration 
gives X values which are 60% higher than those obtained 
here. 

As a fitting parameter, the ratio dtofdi,0 =-2 was 
determined. However, Dreybrodt et al. used a different 
definition of d~.o [compare their Eq. (1) with our Eq. (4)}. 
In the notation of this work, their result would read 
d~,ol di,0 = -1.2. The difference between both results 
arises mainly from the different values used for the func­
tionx+-x-. 

B. Dreybrodt et al. (1973) 

The experimental results of Dreybrodt6 (1973) are 
essentially the same as those of Ref. 5. The two- and 
three-band coefficients, however, cannot be directly com­
pared with the other determinations (Refs. 5 and 7, this 
work) because there is an error in Eq. (3) of Ref. 6, lead­
ing to different units for the interaction coefficients. 

C. Richter et al. {1978) 

For the two-band terms, these authors7 used26 the ex­
perimental dX I dE of Shaklee et a/. 20 as in Ref. 5, but for 
the three-band terms they performed a numerical calcula­
tion of x+ -x- from X(w) of Ref. 27. They calculated 
that Im(X+-x-> has a maximum value of 1, while our 
measured 1mX has a maximum of about 1.5. This differ­
ence is too large, since, in view of the approximate validi­
ty of Eq. (14), as discussed above, these two values should 
be very similar. The ratio dtofdi,0 was found to be -7. 
The difference with Ref. 5 can be traced back to the dif­
ferent values attributed to the function x+ -x- and to 
the fact that Richter et al. not only fitted the resonance 
shape, but also the enhancement under uniaxial stress. 
The result d~.ol di,o =-7, however, is also different from 
our d5,ol di,0 = -2. This is again due to differences be­
tween the values for Im(X+-x-) in both works and to 
the fact that the imaginary part of dX/dE is enhanced in 
Ref. 7 with respect to our ellipsometric results. 

Opposite signs of d~.o and di,0 were found to be neces­
sary to ex~lain the antiresonance in the TO-RRS spectra 
above E 1• •

7 The explanation given in Refs. 5 and 7 is 
that for dtofdi,0 <0, the two- and three-band terms in­
terfere destructively above the gap. Although there are 
indications of this antiresonance in our experimental spec­
tra [Fig. 2(a)], we have not been able to obtain any antires­
onance above E 1 in the theoretical curve, neither with the 
original data qf Shaklee nor with our new ellipsometric re­
sults, for X. However, we also find that d~.ol di,o must be 
negative. Otherwise, two- and three-band terrns tend to 
interfere destructively at the gap energy. In particular, we 
do not find any resonance enhancement under uniaxial 
stress with atol di,o > 0. 

The dominance of two-band terms in InSb was attribut­
ed to the larger spin-orbit splitting in InSb compared with 
Ge (where the resonance can be explained to a good ap­
proximation with three-band terms only3•14). It is clear 
from Eq. (4) that the larger the spin-orbit splitting a!> the 
smaller the three-band contribution becomes. A second 
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reason for the difference between Ge and InSb was found 
in the stronger excitonic effects in InSb. According to 
Richter et al., the derivative dX/dm is six times larger in 
InSb due to excitonic effects. This last statement is 
wrong. The factor is actually not 6, but merely a number 
between 1 and 2. This can also be clearly seen by compar­
ing the second derivatives of X both materials. 12

•
13 
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